Volume 106, Issue 1, Pages (January 2014)

Slides:



Advertisements
Similar presentations
Volume 111, Issue 10, Pages (November 2016)
Advertisements

Volume 96, Issue 1, Pages (January 2009)
Volume 103, Issue 8, Pages (October 2012)
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Volume 92, Issue 8, Pages (April 2007)
New Concepts in Synaptic Biology Derived from Single-Molecule Imaging
Koichiro Uriu, Luis G. Morelli  Biophysical Journal 
In Vivo Measurement of Glycine Receptor Turnover and Synaptic Size Reveals Differences between Functional Classes of Motoneurons in Zebrafish  Dawnis.
Rapid Assembly of a Multimeric Membrane Protein Pore
Volume 113, Issue 9, Pages (November 2017)
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Unsteady Motion, Finite Reynolds Numbers, and Wall Effect on Vorticella convallaria Contribute Contraction Force Greater than the Stokes Drag  Sangjin.
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Investigating How Peptide Length and a Pathogenic Mutation Modify the Structural Ensemble of Amyloid Beta Monomer  Yu-Shan Lin, Gregory R. Bowman, Kyle A.
Volume 99, Issue 9, Pages (November 2010)
Dynamics of the Serine Chemoreceptor in the Escherichia coli Inner Membrane: A High- Speed Single-Molecule Tracking Study  Dongmyung Oh, Yang Yu, Hochan.
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell
William Y.C. Huang, Han-Kuei Chiang, Jay T. Groves  Biophysical Journal 
Volume 111, Issue 2, Pages (July 2016)
Linda Balabanian, Christopher L. Berger, Adam G. Hendricks 
Volume 103, Issue 12, Pages (December 2012)
Volume 112, Issue 8, Pages (April 2017)
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Emel Ficici, Daun Jeong, Ioan Andricioaei  Biophysical Journal 
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Volume 79, Issue 2, Pages (July 2013)
Mobility of Calcium Channels in the Presynaptic Membrane
Quantifying Biomolecule Diffusivity Using an Optimal Bayesian Method
In Vivo Measurement of Glycine Receptor Turnover and Synaptic Size Reveals Differences between Functional Classes of Motoneurons in Zebrafish  Dawnis.
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
Volume 114, Issue 12, Pages (June 2018)
Jan Ribbe, Berenike Maier  Biophysical Journal 
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
V.M. Burlakov, R. Taylor, J. Koerner, N. Emptage  Biophysical Journal 
Volume 111, Issue 10, Pages (November 2016)
Loredana Vaccaro, Kathryn A. Scott, Mark S.P. Sansom 
Real-Time Nanopore-Based Recognition of Protein Translocation Success
Volume 111, Issue 12, Pages (December 2016)
Volume 114, Issue 4, Pages (February 2018)
Volume 96, Issue 5, Pages (March 2009)
Gauging of the PhoE Channel by a Single Freely Diffusing Proton
Volume 84, Issue 1, Pages (January 2003)
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Volume 111, Issue 6, Pages (September 2016)
Volume 83, Issue 5, Pages (November 2002)
Volume 111, Issue 4, Pages (August 2016)
Volume 114, Issue 1, Pages (January 2018)
Ion-Induced Defect Permeation of Lipid Membranes
Volume 113, Issue 12, Pages (December 2017)
Coupling of S4 Helix Translocation and S6 Gating Analyzed by Molecular-Dynamics Simulations of Mutated Kv Channels  Manami Nishizawa, Kazuhisa Nishizawa 
Coupling of S4 Helix Translocation and S6 Gating Analyzed by Molecular-Dynamics Simulations of Mutated Kv Channels  Manami Nishizawa, Kazuhisa Nishizawa 
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Matthew J. Westacott, Nurin W.F. Ludin, Richard K.P. Benninger 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell
Inherent Force-Dependent Properties of β-Cardiac Myosin Contribute to the Force- Velocity Relationship of Cardiac Muscle  Michael J. Greenberg, Henry Shuman,
Volume 59, Issue 2, Pages (July 2008)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 112, Issue 3, Pages (February 2017)
Sebastian Fritsch, Ivaylo Ivanov, Hailong Wang, Xiaolin Cheng 
Volume 113, Issue 11, Pages (December 2017)
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Amir Marcovitz, Yaakov Levy  Biophysical Journal 
Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor  Yoonji Lee, Songmi Kim, Sun Choi, Changbong Hyeon 
Volume 114, Issue 4, Pages (February 2018)
George D. Dickinson, Ian Parker  Biophysical Journal 
Volume 98, Issue 3, Pages (February 2010)
Evolution of Specificity in Protein-Protein Interactions
Presentation transcript:

Volume 106, Issue 1, Pages 74-83 (January 2014) Mapping the Energy and Diffusion Landscapes of Membrane Proteins at the Cell Surface Using High-Density Single-Molecule Imaging and Bayesian Inference: Application to the Multiscale Dynamics of Glycine Receptors in the Neuronal Membrane  Jean-Baptiste Masson, Patrice Dionne, Charlotte Salvatico, Marianne Renner, Christian G. Specht, Antoine Triller, Maxime Dahan  Biophysical Journal  Volume 106, Issue 1, Pages 74-83 (January 2014) DOI: 10.1016/j.bpj.2013.10.027 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 General scheme of the assay. (a) Principle of the Bayesian inference method. (Left) High-density single-molecule data (red dots) are recorded at the cell surface. (Right) In a mesh domain, multiple translocations (top) are used to infer the local diffusivity and force (gradient of the potential) that underlie the motion (bottom). (b) GlyRs (blue) diffuse in the membrane and are in dynamic equilibrium between synaptic and extrasynaptic domains in the neuronal membrane. At synapses, GlyRs are stabilized by their interactions with gephyrin clusters (orange), which can be modeled as trapping potential (with depth US). (c) Expression constructs of transmembrane proteins with an extracellular pHluorin tag and an intracellular interaction loop derived from the GlyR β-subunit. (d) Principle of high-density single-molecule uPAINT imaging (16). To see this figure in color, go online. Biophysical Journal 2014 106, 74-83DOI: (10.1016/j.bpj.2013.10.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 Diffusion and energy maps in live neurons. (a) Fluorescence images of cultured neurons expressing mRFP-gephyrin and βWT-TM-pHluorin. Scale bar: 10 μm. (b and c) Diffusion and energy maps. (d–f) Equivalent set of images and maps for β−-TM-pHluorin. (g) Distribution of diffusion coefficients for the membrane constructs βWT-TM (black), βS403D-TM (blue), and β−-TM (red). (Vertical bars on the x axis) Mean values of the respective distributions. (Inset) Distribution in a lin-log scale. (h) Rugosity of the membrane potential as a function of the region radius. To see this figure in color, go online. Biophysical Journal 2014 106, 74-83DOI: (10.1016/j.bpj.2013.10.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 Analysis of the synaptic gephyrin scaffold. (a) Example of a gephyrin cluster (indicated by a box) acting as a local trap in the energy landscape. Scale bar: 5 μm. (b) Cumulative distribution function of trapping energy for the constructs βWT-TM (black) and βS403D-TM (blue). (Inset) Mean values of the distribution. Error bars indicate the mean ± SE. (c) Mean diffusivity for βWT-TM (black), βS403D-TM (blue), and β−-TM (red). Error bars indicate the mean ± SE. To see this figure in color, go online. Biophysical Journal 2014 106, 74-83DOI: (10.1016/j.bpj.2013.10.027) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Analysis of simulated trajectories in the inferred maps. Unless otherwise mentioned, the results correspond to the constructs βWT-TM (black), βS403D-TM (blue), and β−-TM (red). (a) Ensemble-averaged propagator Π(d, t), defined as the probability density function to move by a given distance in t = 10 s. (b) Propagator Π(d, t) for the construct βWT-TM computed at different times t. (Plain lines) Adjustments with the Gaussian curves exp(−d2/2χ2(t))/2πχ2(t). (c) Curves χ(t). (Inset) Propagators for the construct βWT-TM as a function of the rescaled variable ρ = d/χ(t). (d) Mean-squared displacement as a function of time. (Straight lines) Subdiffusive behavior at short timescales. (e) Time-course of the number of receptors at a single synapse. (Inset) Distribution of the minimum (in red) and maximum (in blue) number of receptors computed over traces of 300 s for all the gephyrin clusters. (f) Autocorrelation functions (in gray) for the time traces of number of receptors at gephyrin clusters (computed over 300 s). (Red line) Average autocorrelation function. To see this figure in color, go online. Biophysical Journal 2014 106, 74-83DOI: (10.1016/j.bpj.2013.10.027) Copyright © 2014 Biophysical Society Terms and Conditions