The Back and Forth of Dendritic Plasticity

Slides:



Advertisements
Similar presentations
Christian Rosenmund, Charles F Stevens  Neuron 
Advertisements

Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons
Calcium Dynamics of Spines Depend on Their Dendritic Location
Jason R. Chalifoux, Adam G. Carter  Neuron 
Guangying K. Wu, Pingyang Li, Huizhong W. Tao, Li I. Zhang  Neuron 
Zinc Dynamics and Action at Excitatory Synapses
Activation of Kinetically Distinct Synaptic Conductances on Inhibitory Interneurons by Electrotonically Overlapping Afferents  Harrison C. Walker, J.Josh.
The Generation of Direction Selectivity in the Auditory System
Cellular Mechanisms for Direction Selectivity in the Retina
Long-Term Depression of mGluR1 Signaling
Volume 75, Issue 6, Pages (September 2012)
Aleksander Sobczyk, Karel Svoboda  Neuron 
Dendritic Integration in Hippocampal Dentate Granule Cells
M1 Muscarinic Receptors Boost Synaptic Potentials and Calcium Influx in Dendritic Spines by Inhibiting Postsynaptic SK Channels  Andrew J. Giessel, Bernardo.
David Zenisek, Gary Matthews  Neuron 
Kinetics of Releasable Synaptic Vesicles and Their Plastic Changes at Hippocampal Mossy Fiber Synapses  Mitsuharu Midorikawa, Takeshi Sakaba  Neuron 
Volume 89, Issue 5, Pages (March 2016)
Rebecca S. Jones, Reed C. Carroll, Scott Nawy  Neuron 
Potassium Channels Control the Interaction between Active Dendritic Integration Compartments in Layer 5 Cortical Pyramidal Neurons  Mark T. Harnett, Ning-Long.
Nobutake Hosoi, Matthew Holt, Takeshi Sakaba  Neuron 
Volume 68, Issue 5, Pages (December 2010)
Volume 50, Issue 3, Pages (May 2006)
John T.R. Isaac, Michael C. Ashby, Chris J. McBain  Neuron 
Csaba Földy, Robert C. Malenka, Thomas C. Südhof  Neuron 
Gautam B. Awatramani, Gareth D. Price, Laurence O. Trussell  Neuron 
Differential Expression of Posttetanic Potentiation and Retrograde Signaling Mediate Target-Dependent Short-Term Synaptic Plasticity  Michael Beierlein,
Principles Governing the Operation of Synaptic Inhibition in Dendrites
A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons  Per Jesper Sjöström, Michael Häusser 
Volume 77, Issue 4, Pages (February 2013)
Excitatory Actions of GABA in the Cortex
Volume 60, Issue 5, Pages (December 2008)
Volume 123, Issue 1, Pages (October 2005)
Maarten H.P. Kole, Johannes J. Letzkus, Greg J. Stuart  Neuron 
Tiago Branco, Michael Häusser  Neuron 
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
Expression of Long-Term Plasticity at Individual Synapses in Hippocampus Is Graded, Bidirectional, and Mainly Presynaptic: Optical Quantal Analysis  Ryosuke.
A Novel Form of Local Plasticity in Tuft Dendrites of Neocortical Somatosensory Layer 5 Pyramidal Neurons  Maya Sandler, Yoav Shulman, Jackie Schiller 
Volume 52, Issue 4, Pages (November 2006)
Koen Vervaeke, Hua Hu, Lyle J. Graham, Johan F. Storm  Neuron 
Stephan D. Brenowitz, Wade G. Regehr  Neuron 
Noradrenergic Control of Associative Synaptic Plasticity by Selective Modulation of Instructive Signals  Megan R. Carey, Wade G. Regehr  Neuron  Volume.
Volume 97, Issue 6, Pages e3 (March 2018)
Volume 89, Issue 1, Pages (January 2016)
Attila Losonczy, Jeffrey C. Magee  Neuron 
Gilad Silberberg, Henry Markram  Neuron 
Imaging Inhibitory Synaptic Potentials Using Voltage Sensitive Dyes
Hippocampal Interneurons Express a Novel Form of Synaptic Plasticity
Michael J. Higley, Bernardo L. Sabatini  Neuron 
David Tsay, Joshua T. Dudman, Steven A. Siegelbaum  Neuron 
A Behavioral Role for Dendritic Integration
Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons
Volume 85, Issue 3, Pages (February 2015)
Volume 57, Issue 3, Pages (February 2008)
GABA Generates Excitement
A Role for Synaptic Inputs at Distal Dendrites: Instructive Signals for Hippocampal Long- Term Plasticity  Joshua T. Dudman, David Tsay, Steven A. Siegelbaum 
From Cellular and Molecular Neurophysiology, Fourth Edition.
Attila Losonczy, Jeffrey C. Magee  Neuron 
Volume 78, Issue 3, Pages (May 2013)
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
Christian Rosenmund, Charles F Stevens  Neuron 
Hiroto Takahashi, Jeffrey C. Magee  Neuron 
Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons  Nace L Golding, Nelson Spruston  Neuron 
Volume 95, Issue 5, Pages e4 (August 2017)
Alexandre Mathy, Beverley A. Clark, Michael Häusser  Neuron 
Volume 57, Issue 3, Pages (February 2008)
Volume 57, Issue 6, Pages (March 2008)
Nonlinear Regulation of Unitary Synaptic Signals by CaV2
Direction-Selective Dendritic Action Potentials in Rabbit Retina
Principles Governing the Operation of Synaptic Inhibition in Dendrites
Adam G. Carter, Bernardo L. Sabatini  Neuron 
Presentation transcript:

The Back and Forth of Dendritic Plasticity Stephen R. Williams, Christian Wozny, Simon J. Mitchell  Neuron  Volume 56, Issue 6, Pages 947-953 (December 2007) DOI: 10.1016/j.neuron.2007.12.004 Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 1 Voltage- and Time-Dependent Gating of Calcium Influx through the NMDA Receptor (A) The duration of depolarization dictates calcium entry in a biophysically realistic NMDA receptor model (Kampa et al., 2004). The NMDA receptor was activated by 1 ms pulse of glutamate (1 mM) and voltage stepped from −70 to −50 mV for 25 (thin traces) or 50 ms (thick traces), with a delay of −20, 0, or 20 ms relative to the onset of the glutamate pulse. When paired at −20 ms, the duration of the depolarization critically determines the calcium concentration ([Ca]), estimated from the calcium current (ECa = 50 mV) convolved with a 20 ms single exponential function (Sabatini et al., 2002). Peak [Ca] was normalized to that at −70 mV. (B) Surface plots showing peak [Ca] as a function of the amplitude and duration of membrane potential steps, for delays of −20, 0, or 20 ms relative to glutamate pulse onset. Dashed line in the left plot indicates the timing of the glutamate pulse. Peak [Ca] was normalized to that at −70 mV. Neuron 2007 56, 947-953DOI: (10.1016/j.neuron.2007.12.004) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 2 Schematic Representation of Dendritic Integration during Input-Timing-Dependent Plasticity in a CA1 Pyramidal Neuron Potentiation of the amplitude of Schaffer collateral EPSPs (blue lower traces) is evoked when a perforant path EPSP (red) and Schaffer collateral EPSP are paired at a critical time interval (overlaid red and blue traces). The calcium sources that underlie the induction of this form of long-term potentiation are cartooned within a Schaffer collateral spine (blue circle). It is proposed that potentiation results from calcium entry through NMDA receptors and calcium release from intracellular stores following the activation of metabotropic glutamate receptors. The possible requirement for an intersynaptic signaling molecule is indicated by the filled black circle. Neuron 2007 56, 947-953DOI: (10.1016/j.neuron.2007.12.004) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 3 HCN Channels Compartmentalize Distal Dendritic Excitation in CA1 Pyramidal Neurons (A) Compartmentalization of distal dendritic excitation in a biophysically realistic CA1 pyramidal neuron model (Golding et al., 2005). The synchronous activation of 40 excitatory perforant path synapses generates large voltage responses within the stratum lacunosum-moleculare (red). EPSPs attenuate as they spread through the dendritic arbor to the soma (colder colors). In a passive dendritic tree EPSPs propagate effectively (left). The spread of EPSPs is however, increasingly constrained as the density of HCN channels is increased from physiological (middle) to enhanced levels (three times density, right). The perforant path is represented as horizontal lines. Each synaptic input was modeled as: Esynapse = 0 mV; gsynapse = 0.1 nS; τrise = 0.5 ms; τdecay = 5 ms. (B) The amplitude and time course of EPSPs recorded from a dendritic site within the stratum radiatum (145 μm from soma) is constrained by HCN channels. Neuron 2007 56, 947-953DOI: (10.1016/j.neuron.2007.12.004) Copyright © 2007 Elsevier Inc. Terms and Conditions