3.3 Differentiation Rules

Slides:



Advertisements
Similar presentations
3.3 Differentiation Rules
Advertisements

3.1 Derivatives Great Sand Dunes National Monument, Colorado Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
6.4 day 1 Separable Differential Equations
Section 3.3a. The Do Now Find the derivative of Does this make sense graphically???
2.3 Rules for Differentiation Colorado National Monument Vista High, AB Calculus. Book Larson, V9 2010Photo by Vickie Kelly, 2003.
If the derivative of a function is its slope, then for a constant function, the derivative must be zero. example: The derivative of a constant is zero.
Calculus Warm-Up Find the derivative by the limit process, then find the equation of the line tangent to the graph at x=2.
Derivatives of Powers and Polynomials Colorado National Monument Greg Kelly, Hanford High School, Richland, Washington Adapted by: Jon Bannon Siena College.
If the derivative of a function is its slope, then for a constant function, the derivative must be zero. example: The derivative of a constant is zero.
Rules for Differentiation Colorado National Monument Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
3.3: Rules of Differentiation Objective: Students will be able to… Apply the Power Rule, Sum and Difference Rule, Quotient and Product Rule for differentiation.
Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
2.3 Differentiation Rules Colorado National Monument Larson, Hostetler, & Edwards.
3.2 Differentiability. Yes No All Reals To be differentiable, a function must be continuous and smooth. Derivatives will fail to exist at: cornercusp.
Differentiability Arches National Park- Park Avenue.
3.3 Rules for Differentiation Colorado National Monument Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003 The “Coke Ovens”,
3.3 Rules for Differentiation Colorado National Monument.
Colorado National Monument Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003 AP Calculus AB/BC 3.3 Differentiation Rules,
Derivatives Great Sand Dunes National Monument, Colorado Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
Product rule: Notice that this is not just the product of two derivatives. This is sometimes memorized as:
Pappus of Alexandria 290 – 350 A.D. Pappus of Alexandria 290 – 350 A.D. Pappus is the last of the great Greek geometers and one of his theorems is cited.
The Second Derivative Greg Kelly, Hanford High School, Richland, Washington Adapted by: Jon Bannon Siena College 2008 Photo by Vickie Kelly, 2003 Arches.
3.3 Differentiation Rules Colorado National Monument Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
2.2 Derivatives Great Sand Dunes National Monument, Colorado Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
2.3 Basic Differentiation Formulas
Mean Value Theorem for Derivatives
3.5 Implicit Differentiation
Bell Ringer Solve even #’s.
2.3 The Product and Quotient Rules (Part 1)
London Bridge, Lake Havasu City, Arizona
2.7 and 2.8 Derivatives Great Sand Dunes National Monument, Colorado
Derivative Rules 3.3.
2.3 Basic Differentiation Formulas
3.3 Rules for Differentiation
Colorado National Monument
2.2 Rules for Differentiation
3.2: Rules for Differentiation
Differentiation Rules
3.3 Differentiation Rules
3.4 Derivatives of Trig Functions
London Bridge, Lake Havasu City, Arizona
6.4 day 1 Separable Differential Equations
Mark Twain’s Boyhood Home
Mark Twain’s Boyhood Home
3.3 Differentiation Rules
Lesson 3.3: Rules for Differentiability
Mean Value Theorem for Derivatives
Differentiation Rules
Mean Value Theorem for Derivatives
3.3 Differentiation Rules
Rules for Differentiation
2.2 Basic Differentiation Rules and Rates of Change (Part 1)
Mean Value Theorem and Antiderivatives
Colorado National Monument
2.7 Derivatives Great Sand Dunes National Monument, Colorado
3.4 Derivatives of Trig Functions
3.3 Rules for Differentiation
2.2 Basic Differentiation Rules and Rates of Change (Part 1)
3.1 Derivatives Great Sand Dunes National Monument, Colorado
Mean Value Theorem for Derivatives
Mean Value Theorem for Derivatives
Mean Value Theorem for Derivatives
3.1 Derivatives Great Sand Dunes National Monument, Colorado
3.3 Differentiation Rules
3.7 Implicit Differentiation
3.5 Derivatives of Trig Functions
3.5 Derivatives of Trig Functions
Mean Value Theorem for Derivatives
2.5 Basic Differentiation Properties
London Bridge, Lake Havasu City, Arizona
Presentation transcript:

3.3 Differentiation Rules Colorado National Monument Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2003

If the derivative of a function is its slope, then for a constant function, the derivative must be zero. example: The derivative of a constant is zero.

We saw that if , . This is part of a pattern. examples: power rule

constant multiple rule: examples:

constant multiple rule: sum and difference rules: (Each term is treated separately)

Example: Find the horizontal tangents of: Horizontal tangents occur when slope = zero. Plugging the x values into the original equation, we get: (The function is even, so we only get two horizontal tangents.)

First derivative (slope) is zero at:

product rule: Notice that this is not just the product of two derivatives. This is sometimes memorized as:

quotient rule: or

Higher Order Derivatives: is the first derivative of y with respect to x. is the second derivative. (y double prime) is the third derivative. We will learn later what these higher order derivatives are used for. is the fourth derivative. p