Figure 1 Schematic representation of FOXG1 gene, protein domain structure, and positions of FOXG1 mutations Schematic representation of FOXG1 gene, protein.

Slides:



Advertisements
Similar presentations
Figure Pedigrees of the SCA42 families identified in this study
Advertisements

Figure 2 Sanger sequencing, conservation, and summary of known ACO2 mutations Sanger sequencing, conservation, and summary of known ACO2 mutations (A)
Figure 1 Summary of prior diagnostic workup in neuromuscular disorder cases Summary of prior diagnostic workup in neuromuscular disorder cases Percentage.
Figure Family pedigree and clinical improvement with riboflavin treatment Family pedigree and clinical improvement with riboflavin treatment (A) The proband.
Figure 3 Pedigree of familial idiopathic transverse myelitis
Figure 1 Box plot of the venous diameter in lesions
Figure 2 Needle biopsy of the left vastus lateralis
Figure 2 Flow chart of patients who met the inclusion/exclusion criteria for the study Flow chart of patients who met the inclusion/exclusion criteria.
Figure 4 Correlation of age with [11C](R)-PK11195 binding in the normal-appearing white matter (NAWM) and thalami Correlation of age with [11C](R)-PK11195.
Figure 1 Hierarchical clustering (HCL) outcome of all tested samples with the expression profile of the case report set as unknown Hierarchical clustering.
Figure 1 Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations Spine MRI, sagittal and axial views.
Figure 1 Comparison of miR-150-5p (log scale), prednisone dose (mg), and QMG score between the thymectomy (ETTX) and prednisone groups Comparison of miR-150-5p.
Figure Pedigree of the family
Figure 1 Linear relationship between CSF inflammation and glucose in meningitis; analysis stratified by diagnostic category (aseptic, n = 115 and microbial,
Figure 2 Luciferase assays of transiently transfected HEK 293 cells with reporter constructs containing the 766-bp wild-type KCNJ18 or c.-542 T/A mutant.
Figure 3 Molecular genetics
Figure 2 Correlation between total IgG levels and anti-AQP4 IgG titer
Figure 1 Dominant and recessive missense and nonsense variants in neurofilament light (NEFL)‏ Dominant and recessive missense and nonsense variants in.
Figure WDR45 sequence changes in patients A and B
Figure 3 Temporal trends in FALS incidence
Table 4 Associations in SNP array data between the Braak stage and previously known AD risk loci (341 variants) comparing participants with Braak stage.
Figure 1 All patients with pediatric genetic movement disorders, their genetic diagnoses, and type of genetic investigations All patients with pediatric.
Figure 5 Neurite structure is not disrupted by the lack of neurofilament light (NEFL)‏ Neurite structure is not disrupted by the lack of neurofilament.
Figure 3 Transport activity of human SLC25A4 and SLC25A4 p.Lys33Gln
Figure 2 Schematic displaying the 3 described CHT mutant proteins alongside wild type molecule (Adapted from reference 2, using Microsoft Powerpoint Software)‏
Figure 2 Linkage analysis of chromosome 19
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 3 Mutation carrier–derived lymphoblastoid cell lines (LCLs) show decreased aconitase 2 activity and mitochondrial respiration deficiency compared.
Figure Family tree with the HLA haplotyping of 6 members of the family
Figure 1 Family pedigree and MRI
Figure 2 Functionally significant genes
Table 2 Rs number, gene, OR, 95% CI, and permutation p value for the statistical significant variants resulted from allelic association analysis association.
Figure 1 Family pedigree and DNA sequencing results
Figure 4 Voltage-clamp recordings of KCNJ18 carrying the patient's SNVs expressed in Xenopus laevis oocytes under control conditions and after application.
Figure Diagrammatic levodopa pharmacokinetics after single doses of immediate release (IR) carbidopa/levodopa (CD/LD) and 3 strengths of extended release.
Figure 1 [18F]florbetapir standardized uptake value ratio analytical method [18F]florbetapir standardized uptake value ratio analytical method Flowchart.
Figure 3 Voltage-clamp recording of the wild-type KCNJ18 (left) and the KCNJ18 carrying the patient's SNVs (right) expressed in Xenopus laevis oocytes.
Figure 1 Dissimilar mutation distributions in 88% identical ATP1A2 and ATP1A3 proteins Dissimilar mutation distributions in 88% identical ATP1A2 and ATP1A3.
Figure 1 Pedigree and genetic findings
Figure 1 Histamine flare in patients and controls
Figure 2 Interactome analyses in bvFTD
Figure 3 Similar but restricted distributions of pathogenic variants in the P domain Similar but restricted distributions of pathogenic variants in the.
Figure 2 Changes in fatigue under treatment
Figure 1 Considerations for concussed athletes leading to medical care or return to sport (RTS)‏ Considerations for concussed athletes leading to medical.
Figure 2 Longitudinal relationship between CSF glucose and protein changes Longitudinal relationship between CSF glucose and protein changes Delta glucose.
Figure 2 Global tau-PET distribution in familial prion disease mirrors the distribution seen in Alzheimer disease Global tau-PET distribution in familial.
Figure 1 Family pedigrees, clinical photographs, and multispecies alignment showing the effect of the 3 reported mutations Family pedigrees, clinical photographs,
Figure 2 Kaplan-Meier survival graphs for 10-year risks of overall and post-90-day recurrent ischemic stroke (IS) and death Kaplan-Meier survival graphs.
Figure 1 Annualized percentage brain volume change
Figure 2 Repopulation of CD19+ cells in low and high BSA patients and calculation of the BSA Repopulation of CD19+ cells in low and high BSA patients and.
Figure 3 Genotype-phenotype correlation in SPG7 mutations and age at onset of symptoms Genotype-phenotype correlation in SPG7 mutations and age at onset.
Figure 2 Pathogenic deletions upstream of LMNB1
Figure 4 Distinct groups of ATP1A1 pathogenic variants
Figure 1 bvFTD PINBPA network
Figure 2 Seizure outcomes
Figure 2 Domain/structural organization of mTOR protein with the positions of the mutations indicated Domain/structural organization of mTOR protein with.
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Figure 1 Schematic of the OPA3 gene and OPA3 protein isoform b
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure 2 Pedigrees of families and segregation analysis of variants c
Figure 1 ASO functions ASO functions Target mRNA fates depending on ASO mechanism of action that is determined by where the ASO is targeted and by ASO.
Figure 3 Changing appearance of the frontal cortex with age associated with increasing myelination Changing appearance of the frontal cortex with age associated.
Figure 3 Within-group comparisons (before–after)‏
Figure Pedigree, neuroimaging, and gene analysis
Figure 2 Time from incident ADS event to MS diagnosis
Figure 4 Venn diagram for B-cell Sup proteins compared with proteins from exosome-enriched fractions from a human B-cell line Venn diagram for B-cell Sup.
Figure 3 A receiver operating characteristic curve of days to IVMP as a predictor of failure to regain 0.2 logMAR (20/30) vision (AUC 0.84, p < 0.001)‏
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Figure 4 Western blotting
Presentation transcript:

Figure 1 Schematic representation of FOXG1 gene, protein domain structure, and positions of FOXG1 mutations Schematic representation of FOXG1 gene, protein domain structure, and positions of FOXG1 mutations (A) Schematic representation of FOXG1 gene and (B) FOXG1 protein domain structure and positions of the variations identified: N-terminal domain; FBD domain (forkhead DNA binding domain, amino acids 181–275), GBD domain (Groucho binding domain, amino acids 307–317), JBD domain (JARID1B binding domain, amino acids 383–406), and C-terminal domain are indicated. Mutations are located all along the FOXG1 gene, within different protein domains. Missense mutations are predominantly located in the FBD (91.7%), whereas frameshift mutations are more prominent in the N-terminal domain (57.1%). The novel variants described in this article are highlighted in bold and the recurrent variants are underlined with the corresponding number of recurrences indicated in brackets. FBD = forkhead binding domain; GBD = Groucho binding domain; JBD = JARID1B binding domain. Nancy Vegas et al. Neurol Genet 2018;4:e281 Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.