Experience on Crowd-Human Challenge

Slides:



Advertisements
Similar presentations
Learning Shared Body Plans Ian Endres University of Illinois work with Derek Hoiem, Vivek Srikumar and Ming-Wei Chang.
Advertisements

Food Recognition Using Statistics of Pairwise Local Features Shulin (Lynn) Yang University of Washington Mei Chen Intel Labs Pittsburgh Dean Pomerleau.
Global Service Jam 2014 Shanghai Team 181. Bill VickyAaronMary Zoe Eric Huitse.
Fraud Detection CNN designed for anti-phishing. Contents Recap PhishZoo Approach Initial Approach Early Results On Deck.
1 Mining Relationships Among Interval-based Events for Classification Dhaval Patel 、 Wynne Hsu Mong 、 Li Lee SIGMOD 08.
Stephan Gammeter, Lukas Bossard, Till Quack, Luc Van Gool.
EBI European Bioinformatics Institute. EBI The European Bioinformatics Institute (EBI) part of EMBL is a centre for research and services in bioinformatics.
6-2 認識元件庫與內建元件庫 Flash 的元件庫分兩種, 一種是每個動畫專 屬的元件庫 (Library) ;另一種則是內建元 件庫 (Common Libraries), 兩者皆可透過 『視窗』功能表來開啟, 以下即為您說明。
The net result is that the Extra Credit Research Paper will only really effect your final grade if you are "just" below a final grade cut line. GE2000.
Lecture Note of 12/29 jinnjy. Outline Decidiability Definition and operations of Turing Machine.
Cross Validation Framework to Choose Amongst Models and Datasets for Transfer Learning Erheng Zhong ¶, Wei Fan ‡, Qiang Yang ¶, Olivier Verscheure ‡, Jiangtao.
R-CNN By Zhang Liliang.
Spatial Pyramid Pooling in Deep Convolutional
最 小 公 倍 数最 小 公 倍 数 最 小 公 倍 数最 小 公 倍 数. 例题 顺次写出 4 的几个倍数和 6 的几个倍数,它们 公有的倍数是哪几个?其中最小的是多少? 4 的倍数有 : 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , … 6 的倍数有 :
3 ème Journée Doctorale G&E, Bordeaux, Mars 2015 Wei FENG Geo-Resources and Environment Lab, Bordeaux INP (Bordeaux Institute of Technology), France Supervisor:
Project 1: Classification Using Neural Networks Kim, Kwonill Biointelligence laboratory Artificial Intelligence.
A New High Speed, Low Power Adder; Using Hybrid Analog-Digital Circuit Taherinejad, N.; Abrishamifar, A.; Circuit Theory and Design, ECCTD 2009.
STUDENT NAME: YEN-TING LIN STUDENT ID: Computational Photography Final Project Image effect machine.
2015/10/15LNA Design Using AT 呂旻洲 Laboratory of RF Photonics Department of Physics, NCKU.
A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting Huang, C. L. & Tsai, C. Y. Expert Systems with Applications 2008.
Exploiting Context Analysis for Combining Multiple Entity Resolution Systems -Ramu Bandaru Zhaoqi Chen Dmitri V.kalashnikov Sharad Mehrotra.
Sensor B Sensor A Sensor C Sensor D Sensor E Lightweight Mining Techniques Time Frame: 10 Time Threshold: 20.
Class Imbalance in Text Classification
Project 1: Classification Using Neural Networks Kim, Kwonill Biointelligence laboratory Artificial Intelligence.
Cascade Region Regression for Robust Object Detection
Spatial Localization and Detection
When deep learning meets object detection: Introduction to two technologies: SSD and YOLO Wenchi Ma.
Recent developments in object detection
LSUN Semantic Segmentation Extended PSPNet
CS 4501: Introduction to Computer Vision Object Localization, Detection, Semantic Segmentation Connelly Barnes Some slides from Fei-Fei Li / Andrej Karpathy.
CNN-RNN: A Unified Framework for Multi-label Image Classification
Entity and Aspect Extraction for Organizing News Comments
Object Detection based on Segment Masks
Krishna Kumar Singh, Yong Jae Lee University of California, Davis
A Pool of Deep Models for Event Recognition
Object Detection with Bootstrapping Carlos Rubiano Mentor: Oliver Nina
Ned 很难看。 Ned 有没有女朋友?没有! 他没有女朋友因为他很难看。. Billy 有女朋友吗 ? 也没有! 他没有女朋友因为他很矮。 Billy.
Application Letters.
Project Implementation for ITCS4122
A Convolutional Neural Network Cascade For Face Detection
Bird-species Recognition Using Convolutional Neural Network
Presenter: Usman Sajid
CIKM Competition 2014 Second Place Solution
Before You Leave Today…
The Open World of Micro-Videos
On-going research on Object Detection *Some modification after seminar
Tina Jiang. , Vivek Natarajan. , Xinlei Chen
Generalizations of Markov model to characterize biological sequences
Faster R-CNN By Anthony Martinez.
Age and Gender Classification using Convolutional Neural Networks
YOLO-LITE: A Real-Time Object Detection Web Implementation
Object Tracking: Comparison of
RCNN, Fast-RCNN, Faster-RCNN
Using Multilingual Neural Re-ranking Models for Low Resource Target Languages in Cross-lingual Document Detection Using Multilingual Neural Re-ranking.
Pay Me and I’ll Follow You: Detection of Crowdturfing Following Activities in Microblog Environment Liu Yuli 2016/05/22.
Deep Interest Network for Click-Through Rate Prediction
Department of Computer Science Ben-Gurion University of the Negev
Human-object interaction
Feature Selective Anchor-Free Module for Single-Shot Object Detection
Object Detection Implementations
Volodymyr Bobyr Supervised by Aayushjungbahadur Rana
Jiahe Li
Traffic Density Estimation
Week 6: Moving Target Detection Using Infrared Sensors
Week 7: Moving Target Detection Using Infrared Sensors
Jiahe Li
Introduction Face detection and alignment are essential to many applications such as face recognition, facial expression recognition, age identification,
on Road Signs & Face Detection
BDAT Object Detection Team Name: BDAT Speaker: Jiankang Deng
Shengcong Chen, Changxing Ding, Minfeng Liu 2018
Presentation transcript:

Experience on Crowd-Human Challenge Zheng Ge1,2 Xin Huang1,2 Zequn Jie1,* Yuhu Shan1 1 Tencent AI Lab 2 Waseda University * Team leader

Baseline Re-implementation Exploring Techniques for Further Improvement

Baseline Re-implementation Baseline (visible body, paper): Faster-RCNN, Res50, FPN mMR: 55.94% mMR: 59.67% Baseline (visible body, ours): Faster-RCNN, Res50, FPN, ROI_align FPN+BN, Avoiding negative anchors in ignored regions mMR: 55.76%

Baseline Re-implementation ignore region anchor During training RPN, we avoid the negative anchors whose IoA (Intersection over Anchor) with an arbitrary labeled ignored region > 0.5. An example of labeled ignored region.

Baseline Re-implementation mMR AP@0.5 Baseline (paper) 55.94 85.60 Baseline (ours) 59.67 83.70 + Avoid negative anchors 58.53 84.92 + BN FPN 55.76 85.43 Table1. Evaluation results on Crowdhuman (visible body) validation set. Baseline (ours): Faster RCNN, Res50, FPN, ROI_align, nms_pre=6000

Baseline Re-implementation The effect of nms_pre. nms_pre mMR AP@0.5 12000 56.45 85.37 6000 55.76 85.43 2000 54.24 84.00 1500 54.00 83.38 1000 53.86 82.03 The best result on previous page Table2. Evaluation results on Crowdhuman (visible body) validation set.

Baseline Re-implementation Conclusion mMR AP@0.5 Baseline (paper) 55.94 85.60 Baseline (ours new) 54.24 84.00 Table3. Baseline comparison on validation set (visible body). mMR AP@0.5 Baseline (paper) 50.42 84.95 Baseline (ours new) 46.52 84.04 Table4. Baseline comparison on validation set (full body). Baseline (ours new): Faster RCNN, Res50, BN FPN, ROI_align, nms_pre=2000, Avoid negative anchors

Baseline Re-implementation Exploring Techniques for Further Improvement

Exploring Techniques Techniques bringing Techniques bringing large improvements Techniques bringing marginal improvements Techniques of limited effects Cascade R-CNN Deformable Conv Net SENet154 Multi-Scale Train/Test Ensemble SyncBN Focal Loss GIoU/IoU Loss COCO Pretrain Soft-NMS OHEM Adaptive-NMS Guided Anchor RPN Scale Balanced Sampling … Bounded Repulsion Loss R-CNN Context Merge Cityperson dataset

Exploring Techniques Conclusion mMR gain Baseline 46.52 - + Bounded RepGT Loss 45.80 0.72 + R-CNN Context 45.45 0.35 + multi-scale train/test 43.32 2.13 + Cascade R-CNN + Deformable Conv + SENet154 37.17 6.15 mMR gain Baseline 46.52 - + CityPerson 45.58 0.94 Baseline : Faster RCNN, Res50, BN FPN, ROI_align, nms_pre=2000, Avoid anchors

Exploring Techniques Final Ensemble for Submission SENet154 + Cascade R-CNN + DCN SENet154 + Cascade R-CNN + DCN + Bounded RepGt + Context SENet154 + Cascade R-CNN + DCN + Bounded RepGt + Context + cocopretrain SENet154 + Cascade R-CNN + DCN + Bounded RepGt + Context + cityperson SEResNeXt101 + Cascade R-CNN + DCN + Bounded RepGt + Context Coco没有增益,我们依旧使用它做ensemble的原因是希望coco能提供diversity, 使用senext101的理由也是如此

Exploring Techniques About Jaccard Index Score Threshold Thr. JI 0.55 75.78 0.50 76.48 0.45 77.01 0.40 77.46 Val. Set Val. Subset Test Set filtering huge gap best threshold: 0.55

Thanks