Figure 2 Enhanced imaging techniques and autofluorescence endoscopy for Barrett oesophagus Figure 2 | Enhanced imaging techniques and autofluorescence.

Slides:



Advertisements
Similar presentations
Figure 2 Electromechanical properties of OIHPs
Advertisements

Figure 3 Low-grade inflammation in FGID
Figure 2 Endoscopic imaging of intestinal villi
Figure 1 Imaging of a depressed intramucosal carcinoma
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 8 Implanted devices for the management of heart failure
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Figure 3 The T-cell cytokine tree in IBD
Figure 1 Biosimilar development process
Molecular endoscopy for targeted imaging in the digestive tract
Figure 3 Algorithm from working group describing
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Combination therapy for HCC
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Figure 4 Proinflammatory immune cells and their crosstalk in patients with IBD Figure 4 | Proinflammatory immune cells and their crosstalk in patients.
Figure 1 Definition and concept of ACLF
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Molecular Imaging in Gastrointestinal Endoscopy
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Pseudorelaxation as a consequence of
Figure 1 Environmental factors contributing to IBD pathogenesis
Figure 4 Examples of reflux episodes on pH and pH-impedance monitoring
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Volume 139, Issue 4, Pages e1 (October 2010)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Beyond Standard Image-enhanced Endoscopy Confocal Endomicroscopy
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Brain–gut axis Brain–gut axis. Schematic of the brain–gut axis, including inputs from the gut microbiota, the ENS, the immune system and the external.
Figure 3 Optical coherence tomography images of specialized intestinal
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Systems biological model of IBS
Figure 4 Local species pools that contribute to the
Figure 1 Endoscopic appearance of fundic gland polyps
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Endoscopic images of Barrett's mucosa (×136 zoom using Pentax iScan surface enhancement imaging). Endoscopic images of Barrett's mucosa (×136 zoom using.
Figure 4 4D printing schemes and time-evolving structure geometries
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Endomicroscopy for optical intestinal biopsy
Serial testing with IGRAs reveals underlying phenotypes.
Figure 2 Diffusio-osmotic process for osmotic energy conversion
Nat. Rev. Mater. doi: /natrevmats
Autofluorescence bronchoscopy can discriminate normal from abnormal bronchial mucosa due to the difference in fluorescence emission: normal bronchial mucosa.
Presentation transcript:

Figure 2 Enhanced imaging techniques and autofluorescence endoscopy for Barrett oesophagus Figure 2 | Enhanced imaging techniques and autofluorescence endoscopy for Barrett oesophagus. a | Subtly abnormal irregular mucosa seen in the lower half of the white-light endoscopy image in a patient with Barrett oesophagus. b | Autofluorescence endoscopy image revealing a purple patch of abnormal Barrett mucosa, raising suspicion of dysplasia. c | High-magnification narrow-band imaging confirming a dysplastic area with abnormal vasculature and destroyed pits. Reproduced with permission from Macmillan Publishers Ltd © Mannath, J. & Ragunath, K. Nat. Rev. Gastroenterol. Hepatol. 13, 720–730 (2016). Reproduced with permission from Macmillan Publishers Ltd © Mannath, J. & Ragunath, K. Nat. Rev. Gastroenterol. Hepatol. 13, 720–730 (2016). Hoffman, A. et al. (2017) A guide to multimodal endoscopy imaging for gastrointestinal malignancy — an early indicator Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.46