Anisotropic Membrane Curvature Sensing by Amphipathic Peptides

Slides:



Advertisements
Similar presentations
Membrane-Induced Structural Rearrangement and Identification of a Novel Membrane Anchor in Talin F2F3  Mark J. Arcario, Emad Tajkhorshid  Biophysical.
Advertisements

Computer Simulation of Small Molecule Permeation across a Lipid Bilayer: Dependence on Bilayer Properties and Solute Volume, Size, and Cross-Sectional.
Steady-State Differential Dose Response in Biological Systems
Volume 112, Issue 11, Pages (June 2017)
Pedro R. Magalhães, Miguel Machuqueiro, António M. Baptista 
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Molecular Dynamics Simulation Analysis of Membrane Defects and Pore Propensity of Hemifusion Diaphragms  Manami Nishizawa, Kazuhisa Nishizawa  Biophysical.
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Composition Fluctuations in Lipid Bilayers
Elucidating the Locking Mechanism of Peptides onto Growing Amyloid Fibrils through Transition Path Sampling  Marieke Schor, Jocelyne Vreede, Peter G.
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 104, Issue 1, Pages (January 2013)
Prediction of Thylakoid Lipid Binding Sites on Photosystem II
Volume 102, Issue 3, Pages (February 2012)
Volume 103, Issue 5, Pages (September 2012)
Mechanism of the αβ Conformational Change in F1-ATPase after ATP Hydrolysis: Free- Energy Simulations  Yuko Ito, Mitsunori Ikeguchi  Biophysical Journal 
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Rainer A. Böckmann, Helmut Grubmüller  Biophysical Journal 
CW and CCW Conformations of the E
Volume 99, Issue 8, Pages (October 2010)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 98, Issue 8, Pages (April 2010)
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Andrew E. Blanchard, Mark J. Arcario, Klaus Schulten, Emad Tajkhorshid 
Computational Lipidomics of the Neuronal Plasma Membrane
Haden L. Scott, Justin M. Westerfield, Francisco N. Barrera 
Molecular-Dynamics Simulations of the ATP/apo State of a Multidrug ATP-Binding Cassette Transporter Provide a Structural and Mechanistic Basis for the.
“DFG-Flip” in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop  Harish Vashisth, Luca Maragliano, Cameron F.
Calculating the Free Energy of Association of Transmembrane Helices
Volume 103, Issue 2, Pages (July 2012)
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
Computational Modeling Reveals that Signaling Lipids Modulate the Orientation of K- Ras4A at the Membrane Reflecting Protein Topology  Zhen-Lu Li, Matthias.
Till Siebenmorgen, Martin Zacharias  Biophysical Journal 
Volume 96, Issue 7, Pages (April 2009)
Volume 103, Issue 8, Pages (October 2012)
Firdaus Samsudin, Alister Boags, Thomas J. Piggot, Syma Khalid 
Sequential Unfolding of Individual Helices of Bacterioopsin Observed in Molecular Dynamics Simulations of Extraction from the Purple Membrane  Michele.
Volume 95, Issue 9, Pages (November 2008)
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Chetan Poojari, Dequan Xiao, Victor S. Batista, Birgit Strodel 
Volume 112, Issue 2, Pages (January 2017)
Thomas H. Schmidt, Yahya Homsi, Thorsten Lang  Biophysical Journal 
Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein
Volume 112, Issue 12, Pages (June 2017)
Volume 83, Issue 3, Pages (September 2002)
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Ion-Induced Defect Permeation of Lipid Membranes
Robust Driving Forces for Transmembrane Helix Packing
The Selectivity of K+ Ion Channels: Testing the Hypotheses
Mechanism of Anionic Conduction across ClC
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Molecular Dynamics Simulations of the Rotary Motor F0 under External Electric Fields across the Membrane  Yang-Shan Lin, Jung-Hsin Lin, Chien-Cheng Chang 
Membrane Insertion of a Voltage Sensor Helix
Steady-State Differential Dose Response in Biological Systems
Volume 88, Issue 6, Pages (June 2005)
Raghvendra Pratap Singh, Ralf Blossey, Fabrizio Cleri 
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Yuri G. Strukov, A.S. Belmont  Biophysical Journal 
Y. Zenmei Ohkubo, Emad Tajkhorshid  Structure 
Frank T.M. Nguyen, Michael D. Graham  Biophysical Journal 
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Volume 98, Issue 4, Pages (February 2010)
Volume 98, Issue 3, Pages (February 2010)
Presentation transcript:

Anisotropic Membrane Curvature Sensing by Amphipathic Peptides Jordi Gómez-Llobregat, Federico Elías-Wolff, Martin Lindén  Biophysical Journal  Volume 110, Issue 1, Pages 197-204 (January 2016) DOI: 10.1016/j.bpj.2015.11.3512 Copyright © 2016 Biophysical Society Terms and Conditions

Figure 1 Structures of magainin (52), melittin (53), and LL-37 (64). The melittin and LL-37 structures contain two α-helices that form an angle β (not the same for both structures). The α-helices used in the analysis are N-terminal (blue) and C-terminal (orange), with the limiting amino acids labeled on the structure. (Gray) Side-chain and nonhelical residues. To see this figure in color, go online. Biophysical Journal 2016 110, 197-204DOI: (10.1016/j.bpj.2015.11.3512) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 2 Buckled simulation and analysis. (a) The position s of a peptide is defined by the projection of the center-of-mass (blue dot) onto the midplane surface (yellow). The in-plane orientation θ is defined by projecting the peptide backbone direction (green arrow, pointing toward the C-terminal end) onto the local tangent plane (gray) at s. The local tangent and normal vectors are indicated by t and n, respectively. (b) Side and (c) top view of a simulation snapshot with peptide position and orientation indicated using the notation and local coordinate system in (a). The system size is Lx = 20.88 nm and Ly = 13.05 nm. (Green) Peptide (LL-37 in this case); (gray) lipid tails; (light red) lipid phosphate groups; (blue) lipids’ innermost tail beads. The side view (b) also shows the Euler buckling profile (red line) fitted to the bilayer midplane, and the inflection points at s = 0.5 ± 0.25 (yellow crosses) used to align the buckled configurations. Molecular graphics generated with VMD (65). To see this figure in color, go online. Biophysical Journal 2016 110, 197-204DOI: (10.1016/j.bpj.2015.11.3512) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 3 Distributions of peptide positions and orientations in the buckled bilayer. (a) Average buckled shape in terms of densities of inner lipid tail beads (blue) and phosphate groups (gray) after alignment, for one production run with LL-37. (Green dots) Representative peptide center-of-mass positions. (Dashed red lines) Average fitted midplane ± 2.15 nm offsets in the normal direction. (b–d) Aggregated (s,θ)-histograms for (b) magainin, (c) melittin (using the orientation of the C-terminal helix), and (d) LL-37. (e) Distributions of internal angle β (see Fig. 1) for melittin and LL-37. (f) Orientation-averaged binding free energy versus curvature at the peptide center-of-mass (Eq. 4) for the three peptides. Error bars show maximum and minimum values from three independent simulations. (Dashed lines) Guides to the eye (fits to quadratic curves); (solid lines) results for the EC model (Eq. 8) using the fit parameters in Fig. 4. To see this figure in color, go online. Biophysical Journal 2016 110, 197-204DOI: (10.1016/j.bpj.2015.11.3512) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 4 Fitting quadratic models to data. (a and b) Marginal position and angle distributions, showing data (gray) and nearly identical curves from the EC and general quadratic model (E2, see Table S1). (c) (s,θ)-distributions for the EC model. (d) EC fit-parameters ± boostrap SD (see Materials and Methods) due to finite sampling (see Section S1 in the Supporting Material), with α indicating the preferred orientation. Cmin is the preferred curvature, from minimizing Eq. 12. To see this figure in color, go online. Biophysical Journal 2016 110, 197-204DOI: (10.1016/j.bpj.2015.11.3512) Copyright © 2016 Biophysical Society Terms and Conditions

Figure 5 Curvature-sensing site and (s,θ)-correlations. (a) A freely rotating peptide whose midpoint (black) is fixed at s = 0. (b) Resulting correlations sC,N ∝ cosθ for the N- and C-terminal ends (red, blue). To see this figure in color, go online. Biophysical Journal 2016 110, 197-204DOI: (10.1016/j.bpj.2015.11.3512) Copyright © 2016 Biophysical Society Terms and Conditions