EXAMPLE 1 Use the Law of Detachment

Slides:



Advertisements
Similar presentations
Sec 2-3 Concept: Deductive Reasoning Objective: Given a statement, use the laws of logic to form conclusions and determine if the statement is true through.
Advertisements

EXAMPLE 1 Use the Law of Detachment
Geometry 2.3 Big Idea: Use Deductive Reasoning
2.5 - I F -T HEN S TATEMENTS AND D EDUCTIVE R EASONING Homework #6.
2-4 Rules of Logic What is deductive reasoning?
Targets Use the Law of Detachment. Use the Law of Syllogism. Lesson 2-3: Deductive Reasoning TARGETS.
4.3 Warm Up Find the distance between the points. Then find the midpoint between the points. (5, 2), (3, 8) (7, -1), (-5, 3) (-9, -5), (7, -14)
Laws of Logic Law of Detachment If p  q is a true conditional statement AND p is true, then you can conclude q is true Example If you are a sophomore.
Bell Ringer.
Section 2.3 Deductive Reasoning.
2.3 Apply Deductive Reasoning. Objectives Use the Law of Detachment Use the Law of Detachment Use the Law of Syllogism Use the Law of Syllogism.
Chapter 2.3 Notes: Apply Deductive Reasoning Goal: You will use deductive reasoning to form a logical argument.
The Law of Detachment This applies when one statement is conditional and a second statement confirms the hypothesis of the conditional. The conclusion.
2.3 Apply Deductive Reasoning Use deductive reasoning to form a logical argument.
Deductive Reasoning What can you D…D….D…. DEDUCE ?
Applying Deductive Reasoning Section 2.3. Essential Question How do you construct a logical argument?
Deductive Reasoning Chapter 2 Lesson 4.
Chapter 2 Lesson 3 Objective: To use the Law of Detachment and the Law of Syllogism.
 ESSENTIAL QUESTION  How can you use reasoning to solve problems?  Scholars will  Use the Law of Syllogism  Use the Law of Detachment UNIT 01 – LESSON.
Lesson 2-4 Deductive Reasoning Deductive reasoning- uses facts, rules, definitions, or properties to reach logical conclusions Law of Detachment: If p.
2.2 Inductive and Deductive Reasoning. What We Will Learn Use inductive reasoning Use deductive reasoning.
EXAMPLE 1 Use the Law of Detachment Use the Law of Detachment to make a valid conclusion in the true situation. If two segments have the same length, then.
Inductive and Deductive Reasoning. Notecard 30 Definition: Conjecture: an unproven statement that is based on observations or given information.
Do Now. Law of Syllogism ◦ We can draw a conclusion when we are given two true conditional statements. ◦ The conclusion of one statement is the hypothesis.
Over Lesson 2–3 5-Minute Check 1 A.Hypothesis: 6x – 5 = 19 Conclusion: x = 4 B.Hypothesis: 6x – 5 = 19 Conclusion: x  4 C.Hypothesis: x = 4 Conclusion:
Inductive and Deductive Reasoning. Definitions: Conditionals, Hypothesis, & Conclusions: A conditional statement is a logical statement that has two parts:
Ch. 2.3 Apply Deductive Reasoning
FRIDAY, AUGUST 24, HOMEWORK CHECK Please pass in your write-ups then check your answers to the homework from Wednesday night: p #42-50 even.
Difference between inductive and deductive reasoning.
Deductive Reasoning Geometry Chapter 2-3 Mr. Dorn.
2.3 Deductive Reasoning p. 87 Reminders Statement Conditional statement Converse Inverse Contrapositive Biconditional Symbols p → q q → p ~p → ~q ~q.
Section 2.2 Inductive and Deductive Reasoning. Definition: Conjecture an unproven statement that is based on observations or given information.
Logic Puzzle.
Name vertical angles and linear pairs. Name a pair of complementary angles and a pair of supplementary angles.
2.3 Warm Up Warm Up Lesson Quiz Lesson Quiz Lesson Presentation Lesson Presentation Apply Deductive Reasoning.
Deductive Reasoning BOMLA LacyMath Geometry Pre-AP.
Splash Screen.
1. Write the converse, inverse, and contrapositive of. “If
2-3 Apply Deductive Reasoning
Chapter 1 Lessons 1-4 to 1-8.
Reasoning Proof and Chapter 2 If ….., then what?
LESSON 2–4 Deductive Reasoning.
Deductive Reasoning.
EXAMPLE 3 Use inductive and deductive reasoning
2.2 Inductive and Deductive Reasoning
Inductive and Deductive Reasoning
Splash Screen.
2-4 Deductive Reasoning Ms. Andrejko.
Deductive Reasoning Deductive Reasoning – Reasoning that uses facts, rules, definitions, or properties to reach logical conclusions. Law of Detachment.
2.2 Inductive and Deductive Reasoning
Sec. 2.3: Apply Deductive Reasoning
Splash Screen.
Do Now Determine how a conclusion was made (by observing a pattern, facts being provided, something that is repeated, etc.) 1. Every time Katie has worn.
Warmup Definition: Perpendicular Lines—
Warmup Write the two conditionals(conditional and converse) that make up this biconditional: An angle is acute if and only if its measure is between 0.
2-3 Deductive Reasoning Objectives:
LESSON 2–4 Deductive Reasoning.
1. Write the converse, inverse, and contrapositive of. “If
1. Write the converse, inverse, and contrapositive of the conditional below and determine the truth value for each. “If the measure of an angle is less.
EXAMPLE 1 Use the Law of Detachment
2.3 Apply Deductive Reasoning
Lesson 2 – 4 Deductive Reasoning
Splash Screen.
Welcome to Interactive Chalkboard
2-3 Apply Deductive Reasoning
2-4 Deductive Reasoning Deductive Reasoning: Using facts, rules, definitions, or properties to reach logical conclusions. Law of Detachment: A form.
Angles, Angle Pairs, Conditionals, Inductive and Deductive Reasoning
2.3 Deductive reasoning Brett Solberg AHS ’11-’12.
Goal 1: Using Symbolic Notation Goal 2: Using the Laws of Logic
Chapter 2.3 Notes: Apply Deductive Reasoning
Presentation transcript:

EXAMPLE 1 Use the Law of Detachment Use the Law of Detachment to make a valid conclusion in the true situation. If two segments have the same length, then they are congruent. You know that BC = XY. a. b. Mary goes to the movies every Friday and Saturday night. Today is Friday. SOLUTION Because BC = XY satisfies the hypothesis of a true conditional statement, the conclusion is also true. So, BC = XY. a.

EXAMPLE 1 Use the Law of Detachment b. First, identify the hypothesis and the conclusion of the first statement.The hypothesis is “If it is Friday or Saturday night,” and the conclusion is “then Mary goes to the movies.” “Today is Friday” satisfies the hypothesis of the conditional statement, so you can conclude that Mary will go to the movies tonight.

GUIDED PRACTICE for Examples 1 and 2 1. If 90° < m R < 180°, then R is obtuse. The measure of R is 155°. Using the Law of Detachment, what statement can you make? ANSWER R is obtuse

GUIDED PRACTICE for Examples 1 and 2 2. If Jenelle gets a job, then she can afford a car. If Jenelle can afford a car, then she will drive to school. Using the Law of Syllogism, what statement can you make ? ANSWER If Jenelle gets a job, then she will drive to school.

GUIDED PRACTICE for Examples 1 and 2 State the law of logic that is illustrated. 3. If you get an A or better on your math test, then you can go to the movies. If you go to the movies, then you can watch your favorite actor. If you get an A or better on your math test, then you can watch your favorite actor. ANSWER Law of Syllogism.

GUIDED PRACTICE for Examples 1 and 2 4. If x > 12, then x + 9 > 20. The value of x is 14 Therefore, x + 9 > 20 ANSWER Law of Detachment

EXAMPLE 4 Compare inductive and deductive reasoning Decide whether inductive or deductive reasoning is used to reach the conclusion. Explain your reasoning. a. Each time Monica kicks a ball up in the air, it returns to the ground. So the next time Monica kicks a ball up in the air, it will return to the ground. b. All reptiles are cold-blooded. Parrots are not cold-blooded. Sue’s pet parrot is not a reptile.

EXAMPLE 4 Reasoning from a graph SOLUTION Inductive reasoning, because a pattern is used to reach the conclusion. a. b. Deductive reasoning, because facts about animals and the laws of logic are used to reach the conclusion.

If water is at room temperature, then it is not frozen. ANSWER Daily Homework Quiz 1. Use the Law of Detachment to make a valid conclusion in the true situation. If two angles are complementary, then the sum of their measures is 90 . C and D are complementary. o m C + m D = 90 ANSWER o 2. Use the Law of Syllogism to make a valid conclusion in the true situation. If water is at room temperature, then it is a liquid. If water is a liquid, then it is not frozen. If water is at room temperature, then it is not frozen. ANSWER

Daily Homework Quiz Use the true statements below to determine whether the conclusion is true or false. Explain your reasoning. If Jeanine does her homework, then she goes to the movies. If Joaquin goes to the movies, then he buys popcorn. If Jeanine goes to the movies, then she buys popcorn. Jeanine does her homework. 3. Jeanine buys popcorn. ANSWER true; the Law of Syllogism 4. If Jeanine goes to the movies, Joaquin goes to the movies. ANSWER False; no laws of logic apply.