Alpha decay half-lives of even-even superheavy elements

Slides:



Advertisements
Similar presentations
X IN L IU ( 劉新 ) Collaborated with Wei Wang and Yuehong Xie Department of Physics, Jiangsu Normal University 17 th Sep.,
Advertisements

J.H. Hamilton 1, S. Hofmann 2, and Y.T. Oganessian 3 1 Vanderbilt University, 2 GSI 3 Joint Institute for Nuclear Research ISCHIA 2014.
Collaboration of BLTP, UC and University Giessen 1. Short history 2. Research based on Dinuclear Idea 3. Various supports 4. Future aspects.
Systematical calculation on alpha decay of superheavy nuclei Zhongzhou Ren 1,2 ( 任中洲 ), Chang Xu 1 ( 许昌 ) 1 Department of Physics, Nanjing University,
Superdeformed oblate superheavy nuclei - mean field results 1.Introduction – some features of exotic shapes 2.Decay modes & possibility of K-isomers 3.Selfconsistent.
The ground state structure and alpha decay of Hs super- heavy isotopes Junqing Li (Institute of Modern Physics, CAS,Lanzhou) KITPC-CAS Relativistic many-body.
SUPERDEFORMED OBLATE SUPERHEAVY NUCLEI ? SDO minima Stability of SDO nuclei K-isomerism Discussion Summary P. Jachimowicz, M. Kowal, J. Skalski.
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
Proton radioactivity, alpha decay, cluster emission and spontaneous fission in a generalized liquid drop model Hongfei Zhang ( 张鸿飞 ) School of Nuclear.
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
Production of elements near the N = 126 shell in hot fusion- evaporation reactions with 48 Ca, 50 Ti, and 54 Cr projectiles on lanthanide targets Dmitriy.
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
The stability of triaxial superdeformed shape in odd-odd Lu isotopes Tu Ya.
Theoretical studies on properties of some superheavy nuclei Zhongzhou REN Department of Physics, Nanjing University, Nanjing, China Center of Theoretical.
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effects in nuclear mass models Nuclear Structure and Related Topics (NSRT15), , DUBNA.
"Dead-time" reduction of the detection system of the Dubna Gas-filled Recoil Separator V.G.Subbotin, Yu.S.Tsyganov, A.A.Voinov, A.M.Sukhov, A.N.Polyakov,
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effect in Weizsaecker-Skyrme mass formula ISPUN14, , Ho Chi Minh City 1 Guangxi Normal.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Ning Wang An improved nuclear mass formula Guangxi Normal University, Guilin, China KITPC , Beijing.
In-Medium Cluster Binding Energies and Mott Points in Low Density Nuclear Matter K. Hagel SSNHIC 2014 Trento, Italy 8-Apr-2014 Clustering and Medium Effects.
Chong Qi ( 亓冲 ) Dept. of Physics, KTH, Stockholm Abrupt changes in alpha decay systematics as a manifestation of collective nuclear modes 赤峰学院 全国核结构大会.
1 Systematic calculations of alpha decay half-lives of well- deformed nuclei Zhongzhou REN ( 任中洲 ) Department of Physics, Nanjing University, Nanjing,
Dept. of Physics, KTH, Stockholm
Study on Sub-barrier Fusion Reactions and Synthesis of Superheavy Elements Based on Transport Theory Zhao-Qing Feng Institute of Modern Physics, CAS.
1 Synthesis of superheavy elements with Z = in hot fusion reactions Wang Nan College of Physics, SZU Collaborators: S G Zhou, J Q Li, E G Zhao,
CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the 48 Ca Am reaction CHEMICAL IDENTIFICATION of the element Db.
The i 13/2 Proton and j 15/2 Neutron Orbital and the SD Band in A~190 Region Xiao-tao He En-guang Zhao En-guang Zhao Institute of Theoretical Physics,
Heavy ion nuclear physics in JINR /present and future/ Yuri Oganessian FLNR JINR 28-th of Nucl. Phys. PAC meeting June 19-20, 2008, JINR, Dubna.
R.Burcu Cakirli*, L. Amon, G. Audi, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, R.F. Casten, S. George, F. Herfurth, A. Herlert, M. Kowalska,
New Geiger-Nuttall Law of alpha-decay half-lives of heavy nuclei
Oct. 16 th, 2015, Yonsei. RAON 2 Far from Stability Line 3.
We ask for 4 new shifts (to be combined with 2 shifts left for IS386 from 2005) of radioactive beam of 229Ra in order to search for the alpha decay branch.
Fusion of 16,18O + 58Ni at energies near the Coulomb barrier
Probe into the nuclear charge radii of superheavy and exotic nuclei via the experimental decay data Yibin Qian Department of Applied Physics, Nanjing University.
Extracting β4 from sub-barrier backward quasielastic scattering
CREC in the AC operation theory via simulation and experiment
Yu Zhang(张宇), Feng Pan(潘峰)
HEAVY ELEMENT RESEARCH AT THE FLNR (DUBNA)
A Model of One Proton Emission from Deformed Nuclei
Emmanuel Clément IN2P3/GANIL – Caen France
E ISOTOPES, NUCLIDES protons, p neutrons, n
Novel technique for constraining r-process (n,γ) reaction rates.
K. Hagel State of the Art in Nuclear Cluster Physics 14-May-2018
Nuclear masses of neutron-rich nuclei and symmetry energy
From : 1.Introduction to Nuclear and Particle Physics
Sensitivity of reaction dynamics by analysis of kinetic energy spectra of emitted light particles and formation of evaporation residue nuclei.
Charm production at STAR
2Joint Institute for Nuclear Research, Dubna , Russia
NEUTRON EMISSION FROM SPONTANEOUS FISSION OF HEAVY ELEMENTS
Modification of Fragmentation Function in Strong Interacting Medium
The role of fission in the r-process nucleosynthesis
(Lawrence Berkeley National Laboratory)
Systematical calculations on superheavy nuclei
Radioactivity Chp 43.
Symmetry energy coefficients and shell gaps from nuclear masses
Rotation and alignment of high-j orbitls in transfermium nuclei
The 8th APCTP- BLTP JINR Joint Workshop
New Transuranium Isotopes in Multinucleon Transfer Reactions
Jeopardy Nuclear Chem Fission / Fusion Half Life Mystery Q $100 Q $100
Internal structure of f0(980) meson by fragmentation functions
Kazuo MUTO Tokyo Institute of Technology
第十四届核结构会议,2012年4月11-16,湖州师范学院
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Factorization in some exclusive B meson decays
An improved nuclear mass formula
Search for Lepton-number Violating Processes
The total charge-changing cross sections and the partial cross sections of 84Kr fragmentation on Al, C and CH2 targets Luo-Huan Wang1, Liang-Di Huo1, Jia-Huan.
FISSION BARRIERS OF EXOTIC NUCLEI
Coupled-channel study of fine structure in the alpha decay of well-deformed nuclei Zhongzhou REN (任中洲) Department of Physics, Nanjing University, Nanjing,
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Presentation transcript:

Alpha decay half-lives of even-even superheavy elements 报告人:王永佳 指导老师:张鸿飞 兰州大学核科学与技术学院 Email:zhanghongfei@lzu.edu.cn wangyjia05@lzu.cn 2010-07-25 第13届核结构讨论会 内蒙古赤峰学院

Outline Summary Introduction Generalized Liquid Drop Model (GLDM) Numerical  results and discussions Summary

Introduction In 1911, Geiger -Nuttall law: Difference: In 1928, G. Gamow created the QM theory of alpha decay. 1928 In 1928, W. Gurney and U. Condon obtained a general idea of the mysterious instability of the nucleus. Difference: Gurney and Condon argued that the same QM tunneling analysis should also be applicable to beta decay, whereas Gamow already knew that beta decay posed a much deeper theoretical challenge.

Various models Theoretical models: Semi-empirical formula: Viola–Seaborg–Sobiczewski: G. Royer and H.F. Zhang : Theoretical models: Cluster model, DDCM , GDDCM GLDM, DDM3Y, unified fission model [Ref.] J. Phys. G: Nucl. Part. Phys. 35 (2008) 085102

Introduction Superheavy elements Decay modes: alpha decay and spontaneous fission Identification  Dubna: 48Ca+249Bk-----293,294117 GSI : 48Ca+244Pu-----288,289114 [Ref.] Phys. Rev. Lett. 104(2010) 252701 [Ref.] Phys. Rev. Lett. 104(2010) 142502

Our method Generalized liquid drop model (GLDM) Preformation factor Assault frequency [For heavy even-even nuclei Z>82 and N>126] The standard deviation between the extracted data and the values obtained from this Eq. is only 0.1622, implying that the average deviation between the theoretical estimates and the experimental data for alpha decay half-lives of heavy even-even nuclei will be 100.1622 = 1.45. [Ref.] wang yong-jia and zhang hong-fei at el. CHIN. Phys. Lett. 27(6) 062103

Alpha decay energy [Ref.] T. Dong and Z. Ren, Phys. Rev. C 77, 064310 (2008). [Ref.] B. Buck, A. C. Merchant and S. M. Perez, Phys. Rev. C45(1992), 2247. [Ref.] E.L. Medeiros et al. , J. Phys. G 32(2006) B23.

Alpha decay energy The previously mentioned formula can be simplified: Royer formula: [Ref.] G. Royer and H. F. Zhang Phys. Rev. C77 037602 [Ref.] Jianmin Dong at el. Phys. Rev. C81(2010)064309

Compared with experimental data AZ Qexp(MeV) QDong(MeV) T(exp.) T(cal.) 294118 11.81±0.06 11.718 0.89(+1.07/-0.31)ms 0.94ms 292116 10.80±0.07 10.810 18(+16/-6)ms 48.4ms 290116 11.00±0.0.08 11.087 7.1(+3.2/-1.7)ms 16.1ms 288114 10.09±0.07 10.164 0.69 (+0.17/-0.11)s 0.827s 286114 10.33±0.06 10.447 0.26s 0.18s 284112 SF 9.510 99(+24/-16)ms 29.34s 282112 9.799 0.82(+0.30/-0.18)ms 1.56s 270110 11.24±0.05 11.092 100(+140/-40)s 0.93s 266108 10.38±0.02 10.481 2.3(+1.3/-0.6)ms 2.32ms

Compared with experimental data AZ Qexp(MeV) QDong(MeV) T(exp.) T(cal.) 264108 10.848 10.766 81s 20.5s 260106 9.92±0.03 10.155 9.5(+2/-2)ms 8.1ms 260104 8.947 8.935 1s 0.846s 258104 9.296 9.238 92ms 82.5ms 256104 8.966 9.109 0.304s 0.596s Experimental Data come from: Yu. Ts. Oganessian et al., Phys. Rev. C 69, 021601(R) (2004);70, 064609 (2004); 72, 034611 (2005); 74, 044602 (2006); 76, 011601(R) (2007) and G. Audi et al. Nucl. Phys. A 729 (2003) 3.

Superheavy elements Cold fusion:Z<113 Hot fusion:48Ca, 56Fe : Dubna: Ca+Pu,Am,Cm,Bk,Cf 114---118 GSI: Ca+Pu---114 281 Ds---277Hs+alpha Future: Ca + Md ---121 Fe + Md ---127 Nuclei which Z<127 would be synthesized in the near future.

Alpha decay and spontaneous fission Phys. Rev. C78(2008) 044329 For 45 nuclei Region from 232Th to 286114

Very long SF half-life, why? Z. Ren, et al. NPA 759 (2005) 64. Chang Xu, et al. PRC78 (2008) 044329. K.P. Santhosh et al. NPA832(2010)220

Summary We improved the assault frequency in the GLDM. The improved model agrees with the experimental data of heavy nuclei within a factor of 2. General predictions

Thanks for your attention! Thanks for the organizer of this conference!