ECE 5345 Gaussian Random Processes copyright R.J. Marks II.

Slides:



Advertisements
Similar presentations
Copyright R.J. Marks II EE 505 Sums of RV’s and Long-Term Averages (The Central Limit Theorem)
Advertisements

Copyright R.J. Marks II ECE 5345 Ergodic Theorems.
13.4 Mathematical Induction. Mathematical Induction is a common method of proving that each statement of an infinite sequence of mathematical statements.
Continuous Random Variable (2). Families of Continuous Random Variables Uniform R.V. Exponential R.V. Gaussian R.V.
Copyright Robert J. Marks II ECE 5345 Random Processes - Example Random Processes.
EE322 Digital Communications
Dimensionality Reduction
2003/02/13 Chapter 4 1頁1頁 Chapter 4 : Multiple Random Variables 4.1 Vector Random Variables.
4. Convergence of random variables  Convergence in probability  Convergence in distribution  Convergence in quadratic mean  Properties  The law of.
What is entry A in the matrix multiplication: ( a) 1 (b) -2(c) 5 (d) 11(e) 13 (f) 0.
The moment generating function of random variable X is given by Moment generating function.
Chapter 5. Operations on Multiple R. V.'s 1 Chapter 5. Operations on Multiple Random Variables 0. Introduction 1. Expected Value of a Function of Random.
Lecture 16 Random Signals and Noise (III) Fall 2008 NCTU EE Tzu-Hsien Sang.
Appendix 4.1 Alternate Proofs of Selected HO Theorems.
Sep 20, 2005CS477: Analog and Digital Communications1 Random variables, Random processes Analog and Digital Communications Autumn
Copyright Robert J. Marks II ECE 5345 Random Processes - Stationary Random Processes.
III. Multi-Dimensional Random Variables and Application in Vector Quantization.
Lecture 12 Vector of Random Variables
N– variate Gaussian. Some important characteristics: 1)The pdf of n jointly Gaussian R.V.’s is completely described by means, variances and covariances.
Elements of Stochastic Processes Lecture II
7 sum of RVs. 7-1: variance of Z Find the variance of Z = X+Y by using Var(X), Var(Y), and Cov(X,Y)
III. Multi-Dimensional Random Variables and Application in Vector Quantization.
Fabio D’Andreagiovanni Lecture Notes on Total Unimodularity.
Trigonometric Identities 20 December Remember: y = sin α x = cos α α = alpha (just another variable, like x or θ )
Random Processes Gaussian and Gauss-Markov processes Power spectrum of random processes and white processes.
2.2 The Inverse of a Matrix. Example: REVIEW Invertible (Nonsingular)
MAT 4725 Numerical Analysis Section 7.1 Part I Norms of Vectors and Matrices
Lesson 1.6 Paragraph Proofs Objective: Write paragraph proofs.
Simplifying Expressions and SOLVING Equations
6 vector RVs. 6-1: probability distribution A radio transmitter sends a signal to a receiver using three paths. Let X1, X2, and X3 be the signals that.
Section 9.4 – Mathematical Induction Mathematical Induction: A method to prove that statements involving natural numbers are true for all natural numbers.
基 督 再 來 (一). 經文: 1 你們心裡不要憂愁;你們信神,也當信我。 2 在我父的家裡有許多住處;若是沒有,我就早 已告訴你們了。我去原是為你們預備地去 。 3 我 若去為你們預備了地方,就必再來接你們到我那 裡去,我在 那裡,叫你們也在那裡, ] ( 約 14 : 1-3)
PROVING STATEMENTS IN GEOMETRY. WHAT IS A PROOF? A written account of the complete thought process that is used to reach a conclusion. Each step is supported.
Uncertainty and Error Propagation
FUNDAMENTAL Trigonometric IDENTITIES.
Pythagorean theorem: In a right triangle the square of the hypotenuse
Arrays (in Small Basic)
PROBABILITY AND STATISTICS
Copyrights apply.
Face detection using Random projections
The LaGrange Error Estimate
Chapter 7 Functions of Random Variables (Optional)
اختر أي شخصية واجعلها تطير!
ECE 417 Lecture 4: Multivariate Gaussians
Слайд-дәріс Қарағанды мемлекеттік техникалық университеті
.. -"""--..J '. / /I/I =---=-- -, _ --, _ = :;:.
Tutorial 7: General Random Variables 3
EE 505 Multiple Random Variables (cont)
II //II // \ Others Q.
ВОМР Подмярка 19.2 Възможности за финансиране
Споразумение за партньорство
,. . ' ;; '.. I I tI I t : /..: /.. ' : ····t I 'h I.;.; '..'.. I ' :".:".
I1I1 a 1·1,.,.,,I.,,I · I 1··n I J,-·
Sampling Distribution of the Mean
copyright Robert J. Marks II
Problem 1.
Alternate Proofs of Selected HO Theorems
UNIT-3. Random Process – Temporal Characteristics
ECE 5345 Stochastic Processes
ECE 5345 Sums of RV’s and Long-Term Averages Confidence Intervals
Uncertainty and Error Propagation
Chapter 4 Mathematical Expectation.
Basic Matrix Operations
copyright Robert J. Marks II
copyright Robert J. Marks II
. '. '. I;.,, - - "!' - -·-·,Ii '.....,,......, -,
THE DIMENSION OF A VECTOR SPACE
copyright Robert J. Marks II
Section 11.7 The Binomial Theorem
Lesson: Derivative Techniques -1
Presentation transcript:

ECE 5345 Gaussian Random Processes copyright R.J. Marks II

Multi-Dimensional Gaussian Random variables pdf and characteristic function: copyright R.J. Marks II

Multi-Dimensional Gaussian Random variables Expanded characteristic function: copyright R.J. Marks II

Multi-Dimensional Gaussian Random variables Theorem: If a Gaussian RP is WSS, it is also SSS Proof: The process is WSS. Thus Choose k points {ti|1 i  k}. The elements of the K matrix are copyright R.J. Marks II

Multi-Dimensional Gaussian Random variables For k points to {ti|1 i  k}, we have copyright R.J. Marks II

Multi-Dimensional Gaussian Random variables If we shift the k points to {ti- |1 i  k}. The elements of the K matrix are then quod erat demonstrandum copyright R.J. Marks II