Semiconductor Device Modeling & Characterization Lecture 18

Slides:



Advertisements
Similar presentations
Chapter 4 – Bipolar Junction Transistors (BJTs)
Advertisements

L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
Modelling & Simulation of Semiconductor Devices
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
L30 01May031 Semiconductor Device Modeling and Characterization EE5342, Lecture 30 Spring 2003 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
スパイスモデル解析精度比較検証 デジタルトランジスタ 型名: DTC144EE 比較対象のスパイスモデル ビー・テクノロジーのモデル ⇒スパイス・パークからダウンロード ロームのモデル ⇒メーカー・サイトからダウンロード 比較対象のスパイスモデル ビー・テクノロジーのモデル ⇒スパイス・パークからダウンロード.
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010
L19 March 291 EE5342 – Semiconductor Device Modeling and Characterization Lecture 19 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
Circuit from Model for RF power input Note rectification of the signal: low-pass filter this (which happens.
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Chapter 4 – Bipolar Junction Transistors (BJTs) Introduction
Chapter 13 Small-Signal Modeling and Linear Amplification
Chapter 4 DC Biasing–BJTs
Recall Lecture 10 Introduction to BJT 3 modes of operation
EKT104 ANALOG ELECTRONIC CIRCUITS [LITAR ELEKTRONIK ANALOG] BASIC BJT AMPLIFIER (PART I) DR NIK ADILAH HANIN BINTI ZAHRI
Lecture 10 Bipolar Junction Transistor (BJT)
TRANSISTOR.
Bipolar Junction Transistor
BJT transistors.
Chapter 4(c) DC Biasing – Bipolar Junction Transistors (BJTs)
SMALL SIGNAL ANALYSIS OF CB AMPLIFIER
SMALL SIGNAL ANALYSIS OF CE AMPLIFIER
Small-Signal Modeling and Linear Amplification
BJT transistors.
The Currents of a BJT The collector current. The base Current.
Chapter 1 – Revision Part 2
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Recall Lecture 10 DC analysis of BJT
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall Last Lecture Voltage Transfer Characteristic
Recall Lecture 12 Voltage Transfer Characteristics Biasing of BJT
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall Lecture 10 Introduction to BJT 3 modes of operation
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 19
Professor Ronald L. Carter
ChapTer FoUr DC BIASING - BIPOLAR JUNCTION TRANSISTORS (BJTs)
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
DC Biasing Circuits.
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Chapter 5 Bipolar Junction Transistors
Presentation transcript:

Semiconductor Device Modeling & Characterization Lecture 18 Professor Ronald L. Carter ronc@uta.edu Spring 2001 L18 March 15

Gummel-Poon Static npn Circuit Model Intrinsic Transistor B RBB ILC IBR ICC - IEC = IS(exp(vBE/NFVt) - exp(vBC/NRVt)/QB B’ ILE IBF RE E L18 March 15

Gummel Poon npn Model Equations IBF = IS  expf(vBE/NFVt)/BF ILE = ISE  expf(vBE/NEVt) IBR = IS  expf(vBC/NRVt)/BR ILC = ISC  expf(vBC/NCVt) ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB QB = { + [ + (BFIBF/IKF + BRIBR/IKR)]1/2 }  (1 - vBC/VAF - vBE/VAR )-1 L18 March 15

BJT Characterization Reverse Gummel vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = (IS/BR)expf(vBC/NRVt) + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) {IKR terms }-1 iE RC iB RE RB vBCx vBC vBE + - L18 March 15

Reverse Gummel Data Sensitivities c Region a - IKRIS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC vBCx = 0 a d e iB b iE iE(A),iB(A) vs. vBC(V) L18 March 15

Region (a) rg Data Sensitivities Region a - IKRIS, RB, RC, NR, VAF iE=bRIBR/QB~[ISIKR]1/2exp(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) L18 March 15

Region (b) rg Data Sensitivities Region b - IS, NR, VAF, RB, RC iE = bRIBR/QB = ISexp(vBC/NRVt) (1-vBC/VAF-vBE/VAR ){IKR terms }-1 L18 March 15

Region (c) rg Data Sensitivities Region c - BR, IS, NR, RB, RC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt) L18 March 15

Region (d) rg Data Sensitivities Region d - BR, IS, NR iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt) L18 March 15

Region (e) rg Data Sensitivities Region e - ISC, NC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt) L18 March 15

RE-flyback data extraction of RE RE  vCE/iB (from IC-CAP Modeling Reference, p. 6-37) RBM  (vBE - vCE)/iB (adapted by RLC from IC-CAP Modeling Reference, p. 6-39) o.c. Qintr vCE RBB B’ vBE E’ iB RE L18 March 15

Extraction of RE from refly data RE  vCE/iB Slope gives RE  7.1 Ohm Model data assumed RE = 1 Ohm L18 March 15

Extraction of RBM from refly data RBM  (vBE - vCE)/iB Slope gives RBM  108 Ohm Model data assumed RB = RBM = 100 Ohm L18 March 15

Sample fg data for parameter extraction IS = 10f NF = 1 BF = 100 Ise = 10E-14 Ne = 2 Ikf = .1m Var = 200 Re = 1 Rb = 100 iC data iB data iC, iB vs. vBEext L18 March 15

Definitions of Neff and ISeff In a region where iC or iB is approxi-mately a single exponential term, then iC or iB ~ ISeffexp (vBEext /(NFeffVt) where Neff = {dvBEext/d[ln(i)]}/Vt, and ISeff = exp[ln(i) - vBEext/(NeffVt)] L18 March 15

Simple extraction of NF, NE from fg data iB data Data set used NF=1 NE=2 Flat Neff region from iC data = 1.00 for 0.195 < vD < 0.390 Max Neff value from iB data is 1.881 for 0.180 < vD < 0.181 iC data NEeff vs. vBEext L18 March 15

Simple extraction of IS, ISE from data Data set used IS = 10f ISE = 10E-14 Flat ISeff for iC data = 9.99E-15 for 0.230 < vD < 0.255 Max ISeff value for iB data is 8.94E-14 for vD = 0.180 iC data iB data ISeff vs. vBEext L18 March 15

Simple extraction of BF from data Data set used BF = 100 Extraction gives max iC/iB = 92 for 0.50 V < vD < 0.51 V 2.42A < iD < 3.53A Minimum value of Neff =1 for slightly lower vD and iD iC/iB vs. iC L18 March 15