Search for Ringdowns in LIGO S4 Data

Slides:



Advertisements
Similar presentations
RECOVERING HARDWARE INJECTIONS IN LIGO S5 DATA Ashley Disbrow Carnegie Mellon University Roy Williams, Michele Vallisneri, Jonah Kanner LIGO SURF 2013.
Advertisements

S3/S4 BBH report Thomas Cokelaer LSC Meeting, Boston, 3-4 June 2006.
A walk through some statistic details of LSC results.
LIGO-G Z Beating the spin-down limit on gravitational wave emission from the Crab pulsar Michael Landry LIGO Hanford Observatory for the LIGO.
Searches for continuous gravitational waves with LIGO and GEO600 M. Landry for the LIGO Scientific Collaboration LIGO Hanford Observatory, Richland WA.
LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04.
Status and Prospects for LIGO Barry C. Barish Caltech 17-March-06 St Thomas, Virgin Islands Crab Pulsar.
LIGO-G W Report on LIGO Science Run S4 Fred Raab On behalf of LIGO Scientific Collaboration.
1 Observing the Most Violent Events in the Universe Virgo Barry Barish Director, LIGO Virgo Inauguration 23-July-03 Cascina 2003.
Gravitational-waves: Sources and detection
Parameter Estimation Using 3.5 post-Newtonian Inspiral Waveforms GWDAW, December 15-18, 2004, Annecy K. Arun, B.R. Iyer, B.S. Sathyaprakash and P. Sundarajan.
Brennan Ireland Rochester Institute of Technology Astrophysical Sciences and Technology December 5, 2013 LIGO: Laser Interferometer Gravitational-wave.
Gravitational Wave Detectors: new eyes for physics and astronomy Gabriela González Department of Physics and Astronomy Louisiana State University.
Systematic effects in gravitational-wave data analysis
LIGO-G Data Analysis Techniques for LIGO Laura Cadonati, M.I.T. Trento, March 1-2, 2007.
Acknowledgements The work presented in this poster was carried out within the LIGO Scientific Collaboration (LSC). The methods and results presented here.
Einstein’s elusive waves
LIGO- G D Status of LIGO Stan Whitcomb ACIGA Workshop 21 April 2004.
TAMA binary inspiral event search Hideyuki Tagoshi (Osaka Univ., Japan) 3rd TAMA symposium, ICRR, 2/6/2003.
Reducing False Alarms in Searches for Gravitational Waves from Coalescing Binary Systems Andrés C. Rodríguez Louisiana State University M.S. Thesis Defense.
The Analysis of Binary Inspiral Signals in LIGO Data Jun-Qi Guo Sept.25, 2007 Department of Physics and Astronomy The University of Mississippi LIGO Scientific.
The inclusion of sub-dominant modes in the signal brings additional modulation in the strain. This effect is visible on the time-frequency profile as measured.
Searching for Gravitational Waves with LIGO Andrés C. Rodríguez Louisiana State University on behalf of the LIGO Scientific Collaboration SACNAS
Searching for Gravitational Waves with LIGO: A New Window on The Universe Duncan Brown Syracuse University RIT Physics Colloquium November 19, 2007 LIGO-G Z.
Status of coalescing binaries search activities in Virgo GWDAW 11 Status of coalescing binaries search activities in Virgo GWDAW Dec 2006 Leone.
Characterization of Hardware Injections in LIGO Data
15 Dec 2005GWDAW 10 LIGO-G Z1 Overview of LIGO Scientific Collaboration Inspiral Searches Alexander Dietz Louisiana State University for the LIGO.
S.Klimenko, December 16, 2007, GWDAW12, Boston, LIGO-G Z Coherent burst searches for gravitational waves from compact binary objects S.Klimenko,
Searching for Gravitational Waves from Binary Inspirals with LIGO Duncan Brown University of Wisconsin-Milwaukee for the LIGO Scientific Collaboration.
Searches for Compact Binary Coalescences in LIGO and Virgo data Gabriela González For the LIGO Scientific Collaboration and the Virgo Collaboration APS.
1. Background A generic ‘chirp’ can be closely approximated by a connected set of multiscale chirplets with quadratically-evolving phase. The problem of.
1 Status of Search for Compact Binary Coalescences During LIGO’s Fifth Science Run Drew Keppel 1 for the LIGO Scientific Collaboration 1 California Institute.
NSF 21 Oct Science Nuggets Jolien Creighton University of Wisconsin–Milwaukee.
LIGO-G D LIGO Laboratory1 Stoyan Nikolov LIGO-G D The LIGO project’s quest for gravitational waves Presenting LIGO to the students of.
The Search For Gravitation Radiation From Periodic Sources Gregory Mendell LIGO Hanford Observatory : The Laser Interferometer Gravitational-wave Observatory.
LIGO- G D Gravitational Wave Observations with Interferometers: Results and Prospects Stan Whitcomb for the LIGO Scientific Collaboration 2 nd.
LIGO-G Z The Q Pipeline search for gravitational-wave bursts with LIGO Shourov K. Chatterji for the LIGO Scientific Collaboration APS Meeting.
Searching for Binary Black Holes with Spin Aligned with Orbital Angular Momentum 1 Deborah L. Hamm – Northern Arizona University LIGO SURF 2013 Mentors:
APS meeting, Dallas 22/04/06 1 A search for gravitational wave signals from known pulsars using early data from the LIGO S5 run Matthew Pitkin on behalf.
LIGO-G Z1 Using Condor for Large Scale Data Analysis within the LIGO Scientific Collaboration Duncan Brown California Institute of Technology.
Introduction Coalescing binary compact objects for a 1.4 M  neutron star inspiralling into a 10 M  black hole would be in-band for ~200 s. We could detect.
Searching for gravitational waves with lasers
G Z The LIGO gravitational wave detector consists of two observatories »LIGO Hanford Observatory – 2 interferometers (4 km long arms and 2 km.
LIGO-G M Press Conference Scientific Operation of LIGO Gary H Sanders Caltech (on behalf of a large team) APS April Meeting Philadelphia 6-April-03.
LIGO-G v1 Searching for Gravitational Waves from the Coalescence of High Mass Black Hole Binaries 2014 LIGO SURF Summer Seminar August 21 st, 2014.
The direct detection of Gravitational Wave Fulvio Ricci on behalf of the LIGO Scientific and VIRGO collaborations What next? – Angelicum – 16/2/2016.
GW – the first GW detection ! Is it a start of GW astronomy ? If “yes” then which ? «Счастлив, кто посетил сей мир в его минуты роковые !...» Ф.Тютчев.
APS Meeting April 2003 LIGO-G Z 1 Sources and Science with LIGO Data Jolien Creighton University of Wisconsin–Milwaukee On Behalf of the LIGO.
LIGO-G Z The Q Pipeline search for gravitational-wave bursts with LIGO Shourov K. Chatterji for the LIGO Scientific Collaboration APS Meeting.
24 th Pacific Coast Gravity Meeting, Santa Barbara LIGO DCC Number: G Z 1 Search for gravitational waves from inspiraling high-mass (non-spinning)
LIGO-G Z Results from LIGO Observations Stephen Fairhurst University of Wisconsin - Milwaukee on behalf of the LIGO Scientific Collaboration.
Search for compact binary systems in LIGO data Thomas Cokelaer On behalf of the LIGO Scientific Collaboration Cardiff University, U.K. LIGO-G Z.
Search for compact binary systems in LIGO data Craig Robinson On behalf of the LIGO Scientific Collaboration Cardiff University, U.K. LIGO-G
Thomas Cokelaer for the LIGO Scientific Collaboration Cardiff University, U.K. APS April Meeting, Jacksonville, FL 16 April 2007, LIGO-G Z Search.
The Q Pipeline search for gravitational-wave bursts with LIGO
Analysis of LIGO S2 data for GWs from isolated pulsars
Coherent wide parameter space searches for gravitational waves from neutron stars using LIGO S2 data Xavier Siemens, for the LIGO Scientific Collaboration.
GW150914: The first direct detection of gravitational waves
On Behalf of the LIGO Scientific Collaboration and VIRGO
Stochastic gravitational wave and its spectral property
M. Benacquista Montana State University-Billings
Status of LIGO Patrick J. Sutton LIGO-Caltech
Search for gravitational waves from binary black hole mergers:
OK Alexander Dietz Louisiana State University
Searches for gravitational waves by the LIGO Scientific Collaboration
Update on Status of LIGO
K.Somiya Detection of blackhole ringdown signals
LIGO Interferometry CLEO/QELS Joint Symposium on Gravitational Wave Detection, Baltimore, May 24, 2005 Daniel Sigg.
Advance Warning of Supermassive Black Hole Mergers
A Waveform Consistency Test for Binary Inspirals using LIGO data
Presentation transcript:

Search for Ringdowns in LIGO S4 Data Lisa M. Goggin, Caltech with Duncan Brown and Alan Weinstein 1st VESF School in Gravitational Waves Cascina, Italy, May 24 2006

Black Hole Ringdowns 3 phases of binary coalescence: inspiral, merger, ringdown We are looking for gravitational waves from black hole ringdowns Searching LIGO S4 data, (S4: Feb 22 - Mar 23, 2005) Picture Credit: Kip Thorne Known waveforms Use matched filtering 1st VESF School, 05/24/06

Ringdown Template The template we use is a damped sinusoid with characteristic frequency, f0 and quality factor, Q. Gravitational waves have unknown amplitude, arrival time, initial phase 1st VESF School, 05/24/06

Template Bank Construct bank of templates according to metric: Creighton (1999), Owen(1995) Range motivated by LIGO detector sensitivities Or, in terms of star’s physical parameters 1st VESF School, 05/24/06

Range of Fourth LIGO Science Run Optimally oriented source Single detector signal-to-noise ratio = 8 Spin a = 0.9 For M=230Msun, sensitive to black hole ringdowns at a distance of Hanford 4km: 400 Mpc Hanford 2km: 150 Mpc Livingston 4km: 300 Mpc 1st VESF School, 05/24/06