Study on the degenerate problems in BEM

Slides:



Advertisements
Similar presentations
MDOF SYSTEMS WITH DAMPING General case Saeed Ziaei Rad.
Advertisements

1 The numerical methods for Helmholtz equation 報告人:陳義麟 國立高雄海洋技術學院造船系副教授 於海洋大學河海工程系 基隆 2003/10/23.
M M S S V V 海洋大學力學聲響振動實驗室 MSVLAB HRE NTOU 1 Plate vibration Part III.
Derivation of stiffness and flexibility for rods and beams by using dual integral equations 海洋大學河海工程學系 報 告 者:謝正昌 指導教授:陳正宗 特聘教授 日期: 2006/04/01 中工論文競賽 (
M S V 2004/10/1 NTOU, MSVLAB 1 工程數學教學經驗談 陳正宗 海洋大學 特聘教授 河海工程學系 Oct. 1, 2004, NTU, 13:30~13:50.
1 Study on eigenproblems for Helmholtz equation with circular and spherical boundaries by using the BIEM and the multipole Trefftz method Reporter : Shing-Kai.
1 Equivalence between the Trefftz method and the method of fundamental solutions for the Green’s function of concentric spheres using the addition theorem.
M M S S V V 0 MSVLAB, HRE, NTOU BEM 期末報告 報 告 人 : 李應德 先生 指導教授 : 陳正宗 終身特聘教授 時 間 : 2009 年 03 月 24 日 地 點 : 河工二館 307 室 Multiple-ellipses problem 積分方程特論.
M M S S V V 0 MSVLAB HRE, NTOU Free vibration of membrane and plate problems by using meshless methods 研 究 生 : 李應德 指導教授 : 陳正宗 教授 陳義麟 博士 時 間 : 2004 年 06.
Nation Taiwan Ocean University Department of Harbor and River June 11, 2015 pp.1 Null-field Integral Equation Approach for Solving Stress Concentration.
結構組專題討論 班級:河工所碩一 A 姓名:蕭嘉俊 學號: M Fundamental solution 自由空間之格林函數.
零場積分方程求解含圓形邊界之應力集中問題 Null-field Integral Equation Approach for Solving Stress Concentration Problems with Circular Boundaries Po-Yuan Chen and Jeng-Tzong.
M M S S V V 0 MSVLAB, HRE, NTOU BEM 期末報告 報 告 人 : 李應德 先生 指導教授 : 陳正宗 終身特聘教授 時 間 : 2009 年 03 月 24 日 地 點 : 河工二館 307 室 Multiple-ellipses problem 積分方程特論.
1 On spurious eigenvalues of doubly-connected membrane Reporter: I. L. Chen Date: Department of Naval Architecture, National Kaohsiung Institute.
Regularized meshless method for solving Laplace equation with multiple holes Speaker: Kuo-Lun Wu Coworker : Jeng-Hong Kao 、 Kue-Hong Chen and Jeng-Tzong.
95 學年度第 2 學期碩士論文口試 1 Derivation of the Green’s function for Laplace and Helmholtz problems with circular boundaries by using the null-field integral equation.
1 The Application of Hypersingular Meshless Method for 3D Potential and Exterior Acoustics Problems Reporter : Professor D. L. Young 2008/01/03 Department.
Spurious Eigensolutions and Fictitious Frequencies for Acoustic Problems with the Mixed-type Boundary Conditions by using BEM 邊界元素法於混合型邊界條件問題之 假根及虛擬頻率探討.
MSVLAB HRE, NTOU Mathematical analysis and numerical study for free vibration of plate using BEM 研究生:林盛益 指導教授:陳正宗 教授 陳義麟 博士 國立臺灣海洋大學河海工程研究所結構組 碩士班畢業論文口試.
1 Applications of addition theorem and superposition technique to problems with circular boundaries subject to screw dislocations Reporter: Chou K. H.
1 The 27 th Conference on Theoretical and Applied Mechanics --- 學生論文競賽 National Cheng-Kung University, Tainan, Taiwan, R. O. C. On the equivalence of the.
The interaction of waves with arrays of vertical circular cylinders
M M S S V V 0 Free vibration analysis of a circular plate with multiple circular holes by using addition theorem and direct BIEM Wei-Ming Lee 1, Jeng-Tzong.
1 Some problems in BEM applications J. T. Chen 陳正宗 特聘教授 Department of Harbor and River Engineering National Taiwan Ocean University, Keelung, Taiwan March.
April, 17-20, 2009 p.1 海大陳正宗終身特聘教授 Trefftz method, image method and method of fundamental solutions for Green’s functions with circular boundaries Jeng-Tzong.
M M S S V V 0 Scattering of flexural wave in thin plate with multiple holes by using the null-field integral equation method Wei-Ming Lee 1, Jeng-Tzong.
1 The Method of Fundamental solutions for exterior acoustic problems 報告人:陳義麟 國立高雄海洋科技大學造船系 高雄 2006/3/19 NSC E
九十四年電子計算機於土木水利工 程應用研討會 1 Analysis of circular torsion bar with circular holes using null-field approach 研究生:沈文成 指導教授:陳正宗 教授 時間: 15:10 ~ 15:25 地點: Room.
MSVLAB, HRE, NTOU 音響學會第十六屆學術研討會 1 Elimination of spurious eigenfrequency in the boundary element method using CHEEF technique 報 告 人: 李應德 先生 指導教授: 陳正宗、陳義麟.
M M S S V V 0 Null-field integral equation approach for free vibration analysis of circular plates with multiple circular holes Wei-Ming Lee 1, Jeng-Tzong.
M M S S V V 0 Free vibration analysis of a circular plate with multiple circular holes by using the multipole Trefftz method Wei-Ming Lee Department of.
1 Eigenanalysis for a concentric sphere using BEM and BIEM 報告學生:高聖凱 指導教授:陳正宗終身特聘教授 時間: 2008/06/24.
M S V 1 Recent development of BEM/BIEM in vibration and acoustics 陳正宗 海洋大學 特聘教授 河海工程學系 Nov. 19, 2004, NSYSU, 14:10~16:00.
報 告 者:蕭嘉俊 指導教授:陳正宗 博士 呂學育 博士 日 期:2005/6/16 地 點:河工二館307
Nation Taiwan Ocean University Department of Harbor and River June 25, 2015 pp.1 Null-field integral equation approach for the scattering water wave problems.
海洋大學力學聲響振動實驗室 1 Regularized meshless method for boundary value problems with multiply-connected domain Jeng-Hung Kao Advisor:
1 Null-field approach for Laplace problems with circular boundaries using degenerate kernels 研究生:沈文成 指導教授:陳正宗 教授 時間: 10:30 ~ 12:00 地點:河工二館 307 室 碩士論文口試.
M M S S V V 0 MSVLAB, HRE, NTOU BEM 期末報告 報 告 人 : 李應德 先生 指導教授 : 陳正宗 終身特聘教授 時 間 : 2008 年 06 月 24 日 地 點 : 河工二館 307 室 Two spherical body 邊界元素法期末報告.
海洋大學力學聲響振動實驗室 1 ECCENTRIC PROBLEM OF LAPLACE EQUATION VIA BEM AND BIEM FINAL REPORT OF BOUNDARY ELEMENT METHOD Z. H. Kao.
含圓形邊界史托克斯流問題之半解析法 A semi-analytical approach for solving Stokes flow problems with circular boundaries 蕭嘉俊 陳正宗 呂學育 內政部建築研究所安全防災組 國立台灣海洋大學河海工程學系 中興工程顧問股份有限公司.
1 On the nonuniqueness of BIEM/BEM using SVD J T Chen, Life-time Distinguished Prof. Taiwan Ocean University August 26 14:50 Room B August 24-29, Adelaide.
1 On the spurious eigenvalues for a concentric sphere in BIEM Reporter : Shang-Kai Kao Ying-Te Lee, Jia-Wei Lee and Jeng-Tzong Chen Date : 2008/11/28-29.
Three-Dimensional Numerical Investigations of Ground Movements of Taipei 101 Deep Excavation 國立中興大學水土保持學系研究所 九十九學年度第二學期 專討四 授課老師 : 陳文福 教授 指導老師 : 林德貴 教授.
Interaction of water waves with an array of vertical cylinders using null-field integral equations Jeng-Tzong Chen 1 ( 陳正宗 ) and Ying-Te Lee 2 ( 李應德 )
1 Part I: Direct problem Null-field integral equation approach for boundary value problems with circular boundaries J. T. Chen Ph.D. 海洋大學特聘教授 陳正宗博士 11:50.
Analysis of two-spheres radiation problems by using the null-field integral equation approach The 32 nd Conference of Theoretical and Applied Mechanics.
Regularized meshless method for solving the Cauchy problem Speaker: Kuo-Lun Wu Coworker : Kue-Hong Chen 、 Jeng-Tzong Chen and Jeng-Hong Kao 以正規化無網格法求解柯西問題.
教學經驗交流 前置基礎知識之檢定 ( 第一堂課 ) 教學研究整合 ( 國際 SCI,EI 期刊 ) 跨校聯合自編教材與教科書 ( 工程數學、 邊界元素法與有限元素法 ) 研究所課題 ─ Term paper 不定期小考 ( 取代指定作業 ) 教學與導師制度結合 ( 對學生自願加課 ) 鼓勵大學生參與國科會大專生專題研究計畫.
Scattering of sound from axisymetric sources by multiple circular cylinders using addition theorem and superposition technique The 32 nd National Conference.
海洋大學力學聲響振動實驗室 1 Regularized meshless approach for antiplane piezoelectricity problems with multiple inclusions J. H. Kao,
Desingularized meshless method for solving the Cauchy problem Speaker: Kuo-Lun Wu Coworker : Kue-Hong Chen 、 Jeng-Tzong Chen and Jeng-Hong Kao 以去奇異無網格法求解柯西問題.
1 A unified formulation for degenerate problems in BEM J. T. Chen, K. H. Chen and I. L. Chen Department of Harbor and River Engineering National Taiwan.
國立台灣海洋大學河海工程 研究所 BEM2004 第 8 次作業 博三 錢榮芳 D 博一 周家慶 D 碩一 吳安傑 M 碩一 李文愷 M Filename: BEM ppt by A. C. Wu 單雙層解法.
1 Equivalence between the Trefftz method and the method of fundamental solutions for the Green’s function of concentric spheres using the addition theorem.
Null-field BIEM for solving a scattering problem from a point source to a two-layer prolate spheroid Null-field BIEM for solving a scattering problem from.
M M S S V V 海洋大學力學聲響振動實驗室 MSV LAB HRE NTOU 1 國立台灣海洋大學河海工程學系 陳正宗 教授 河 海 工 程 概論結 構 工 程河 海 工 程 概論結 構 工 程 國立台灣海洋大學河海工程學系 Analysis of acoustic eigenfrequencies.
MethodFichera’s method The boundary flux equilibrium The CHEEF method The hypersingular formulation The method of adding a rigid body mode Formulation.
M S V H R E NTOU Eigensolution of annular membrane using the method of fundamental solutions Ying-Te Lee 1, I-Lin Chen 2 and Jeng-Tzong Chen 3 1 Graduate.
1 力學聲響振動研究室 (MSVLAB) Degenerate scale analysis for membrane and plate problems using the meshless method and boundary element method 研究生:吳清森 指導教授:陳正宗 教授.
I-Shou University , Kaohsiung, Taiwan, May 30-31, 2015
Copyright © Cengage Learning. All rights reserved.
Degenerate scale for a torsion bar problem using BEM
A study on the method of fundamental solutions using the image concept
碩士學位論文口試報告 Study on the Green’s functions for Laplace problems with circular and spherical boundaries by using the image method Reporter: H.C. Shieh Adviser:
第13屆計算數學研討會暨台灣工業與應用數學會年會
Boundary integral formulation and boundary element analysis for multiply-connected Helmholtz problems 地點: 河工二館會議室 時間: 口試生: 劉立偉 同學 指導教授:
Jia-Wei Lee, Chi-Feng Nien & Jeng-Tzong Chen
Reporter: Shiang-Chih Shieh
國立臺灣海洋大學河海工程研究所結構組 碩士班畢業論文口試
TwSIAM BEM TwSIAM 2013( ) – 靜宜大學 TwSIAM 2014( ) – 東華大學
Presentation transcript:

Study on the degenerate problems in BEM 邊界元素法中退化問題之探討 指導教授:陳正宗 教授 研究生:林書睿 國立臺灣海洋大學河海工程研究所結構組 碩士班畢業論文口試 時間: 5/21, 2002 地點: 河工二館307室

Mathematical essence—rank deficiency Motivation Four pitfalls in BEM Why numerical instability occurs in BEM ? (1) degenerate scale (2) degenerate boundary (3) fictitious frequency Why spurious eigenvalues appear ? (4) true and spurious eigenvalues Mathematical essence—rank deficiency (How to deal with ?)

Outlines Degenerate scale for torsion bar problems Degenerate boundary problems True and spurious eigensolution for interior eigenproblem Fictitious frequency for exterior acoustics Conclusions and further research

Four pitfalls in BEM 1.Degenerate scale for torsion bar problems 2.Degenerate boundary problems 3.True and spurious eigensolution for interior eigenproblem 4.Fictitious frequency for exterior acoustics

The degenerate scale for torsion bar using BEM Error (%) of torsional rigidity 125 5 a Previous approach : Try and error on a Present approach : Only one trial

Determination of the degenerate scale by trial and error Direct searching for the degenerate scale Trial and error---detecting zero singular value by using SVD [Lin (2000) and Lee (2001)]

Degenerate scale for torsion bar problems with arbitrary cross sections An analytical way to determine the degenerate scale The existence of degenerate scale for the two-dimensional Laplace problem xd x sd s Bd B

where is boundary density function Degenerate scale for torsion bar problems with arbitrary cross sections where is boundary density function Mapping properties Expansion ratio , where

Adding a rigid body term c in the fundamental solution For arbitrary cross section, expansion ratio is

Original degenerate scale Degenerate scale for torsion bar problems with arbitrary cross sections 0.184 0.50 Unregularized Regularized c=1.0 Shifting Normal scale Original degenerate scale New degenerate scale

Original degenerate scale Degenerate scale for torsion bar problems with arbitrary cross sections Unregularized Regularized Shifting 0.85 0.31 ( ): exact solution of the degenerate scale 2a 0.4 0.8 1.2 1.6 2 a 0.1 0.2 0.3 0.5 1 S q u r e c o s t i n Conventional BEM (UT formulation) Adding a rigid body term (c=1.0) Normal scale Original degenerate scale New degenerate scale s

Determination of the degenerate scale for the two-dimensional Laplace problems   Cross Section Normal scale Torsional rigidity Reference equation , where , x on B, . 1.4480 1.4509 1.5539 (N.A.) 2.6972 (N.A.) 6.1530 (6.1538) Expansion ratio 0.5020 (0.5) 0.5019 (0.5) 0.5254 (N.A.) 0.6902 (N.A.) 0.8499 (0.85) Degenerate scale R=1.0040 (1.0) = 2.0058 (2.0) a=1.0508 (N.A.) h=2.0700 (N.A.) a=0.8499 (0.85) 2a R a b h Note: Data in parentheses are exact solutions. Data marked in the shadow area are derived by using the polar coordinate.

Three regularization techniques to deal with degenerate scale problems in BEM Hypersingular formulation (LM equation) Adding a rigid body term (U*(s,x)=U(s,x)+c) CHEEF concept

Regularization techniques are not necessary. Numerical results Normal scale ( =3.0, =1.0) Degenerate scale ( =1.5, =0.5) Analytical solution 8.4823 0.5301 2.249 1.174 U T Conventional BEM 8.7623 (3.30%) -0.8911 (268.10%) 2.266 (0.76%) 2.0570 (75.21%) L M formulation 0.4812 (9.22%) 1.1472 (2.31%) Add a rigid body term c=1.0 0.5181 (2.26%) 1.1721(0.19%) c=2.0 0.5176 (2.36%) 1.1723 (0.17%) CHEEF concept 0.5647 (6.53%) CHEEF POINT (2.0, 2.0) 1.1722 (0.18%) CHEEF POINT (5.0, 5.0) cross section 2a Torsion rigidity Square Ellipse method (a=1.0) (a=0.85) Regularization techniques are not necessary. Regularization techniques are not necessary. Note: data in parentheses denote error.

Regularization techniques are not necessary. Numerical results Normal scale h=3.0 Degenerate scale h=2.07 Analytical solution 3.1177 0.7067 12.6488 0.9609 U T Conventional BEM 3.1829 (2.09%) 1.1101 (57.08%) 12.5440 (0.83%) 1.8712 (94.73%) L M formulation 0.6837 (3.25%) 0.9530 (0.82%) Add a rigid body term c=1.0 0.7035 (0.45%) 0.9876 (2.78%) c=2.0 0.7024 (0.61%) 0.9879 (2.84%) CHEEF concept 0.7453 (5.46%) CHEEF POINT (15.0, 15.0) 0.9272 (3.51%) CHEEF POINT (20.0, 20.0) cross section b a h Torsion rigidity Keyway Triangle (a=2.0) (a=1.05) method Regularization techniques are not necessary. Regularization techniques are not necessary. Note: data in parentheses denote error.

Four pitfalls in BEM 1.Degenerate scale for torsion bar problems 2.Degenerate boundary problems 3.True and spurious eigensolution for interior eigenproblem 4.Fictitious frequency for exterior acoustics

Degenerate boundary problems Multi-domain BEM u=0 r=1 interface Subdomain 1 Subdomain 2 Dual BEM

Singular Value Decomposition Conventional BEM in conjunction with SVD Singular Value Decomposition Rank deficiency originates from two sources: (1). Degenerate boundary (2). Nontrivial eigensolution Nd=5 Nd=4 Nd=5

UT BEM + SVD (Present method) Multi-domain BEM Dual BEM versus k Determinant versus k Dual BEM Determinant versus k

Two sources of rank deficiency (k=3.09) Nd=5 None trivial sol. Degenerate boundary Eigensolution

k=3.14 k=3.82 k=4.48 UT BEM+SVD k=3.09 k=3.84 k=4.50 FEM (ABAQUS)

Four pitfalls in BEM 1.Degenerate scale for torsion bar problems 2.Degenerate boundary problems 3.True and spurious eigensolution for interior eigenproblem 4.Fictitious frequency for exterior acoustics

True and spurious eigensolution for Interior eigenproblem Complex-valued BEM --- true eigenvalues Spurious eigenvalues? MRM Real-part BEM Imaginary-part BEM

SVD structure for the influence matrices (true) k=kt Dirichlet problem Neumann problem

SVD structure for the influence matrices (spurious) k=ks Singular formulation Hypersingular formulation

True eigensolution for interior eigenproblems Real-part BEM SVD updating technique Dirichlet problem Neumann problem 20 constant elements

True eigensolution for interior eigenproblems Imaginary-part BEM SVD updating technique Dirichlet problem Neumann problem 8 constant elements

Spurious eigensolution for interior eigenproblems Real-part BEM The Fredholm alternative theorem and SVD updating technique Singular formulation Hypersingular formulation 20 constant elements

Spurious eigensolution for interior eigenproblem Imaginary-part BEM The Fredholm alternative theorem and SVD updating technique Singular formulation Hypersingular formulation 8 constant elements

Four pitfalls in BEM 1.Degenerate scale for torsion bar problems 2.Degenerate boundary problems 3.True and spurious eigensolution for interior eigenproblem 4.Fictitious frequency for exterior acoustics t(a,0) ka

Fictitious frequency for exterior acoustics Mathematical structure for updating matrix Source of numerical instability---zero division by zero A criterion to check the validity of CHIEF points Numerical example

Mathematical structure for updating matrix Proof The subscript i denotes the use of interior degenerate kernel for exterior problem

Mathematical structure for updating matrix For the Dirichlet eigenproblem or symmetry or transpose symmetry

Mathematical structure for updating matrix Multiplicity: True boundary mode for the Dirichlet eigenproblem Fictitious boundary mode

Source of numerical instability---zero division by zero For the Dirichlet problem By pre-multiplying the regular modes Solvable

Source of numerical instability---zero division by zero By pre-multiplying the fictitious modes Unsolvable

A criterion to check the validity of CHIEF points Adding CHIEF points New constraints

A criterion to check the validity of CHIEF points The selected P CHIEF points are valid (No change) For the Neumann problem

Numerical example : valid Real-part Imaginary-part : invalid

Conclusions and further research A more efficient technique was proposed to directly determine the degenerate scale since only one normal scale needs to be computed. The conventional BEM in conjunction with SVD was applied to deal with rank-deficiency (degenerate boundary and nontrivial eigensolution) for the degenerate boundary eigenproblem. By using the Fredholm alternative theorem and SVD techniques in conjunction with the dual formulations, the true and spurious eigenvalues in the complex-valued formulation, the real-part, the imaginary-part BEMs and MRM were sorted out successfully. In order to overcome the rank-deficiency problem due to fictitious frequency, the CHIEF method was reformulated in a unified manner by using the Fredholm alternative theorem and SVD technique.

Further research Although the degenerate scale occurs in the Dirichlet problem of simply two-dimensional Laplace problems by using the BEM, there is no proof of the occurrence of degenerate scale for the problem with the mixed-type boundary condition. The main drawback of the imaginary-part BEM seems to produce ill-conditioned matrices. While this is sometimes the case, it is hoped that further research can alleviate the drawback. Whether the spurious (fictitious) modes in the UT and LM formulations are the same or not needs further investigation.