Fig. 1 Co-aggregation of Aβ16–22 and Aβ40 results in accelerated aggregation kinetics for Aβ40. Co-aggregation of Aβ16–22 and Aβ40 results in accelerated.

Slides:



Advertisements
Similar presentations
Fig. 4 Altitudinal distributions of ice thickness change (m year−1) for the 650 glaciers. Altitudinal distributions of ice thickness change (m year−1)
Advertisements

Fig. 2 Transport properties of a BP transistor at low temperature.
Fig. 4 Ballistic simulation of BP FETs.
Aggregation kinetics of Aβ16–22 are unaffected by the presence of Aβ40
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 2 CFD results. CFD results. Results of CFD simulations in horizontal (left column) and vertical (right column) cross-sections. All models oriented.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 4 Aβ16–22 fibrils increase the aggregation rate of Aβ40 to a greater extent than Aβ16–22 monomers. Aβ16–22 fibrils increase the aggregation rate of.
Fig. 3 Aβ16–22 can interact with Aβ40 monomers and dimers.
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 6 Thermoelectric figure of merit of ZrCoBi-based half-Heuslers and measured heat-to-electricity conversion efficiency. Thermoelectric figure of merit.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Reference-fixing experiment, results.
Fig. 3 Glucose- and structure-dependent insulin release.
Fig. 1 Experimental apparatus used to train and test free-flying bees on their capacity to learn addition and subtraction. Experimental apparatus used.
Fig. 2 Stratigraphic profile of the Area 15 excavation block showing the diagnostic cultural materials and components alongside the stratigraphic sequence.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 6 External drivers and model response.
Fig. 5 Conceptual diagram of the impact of acid deposition on calcium cycling and subsequent plant water use. Conceptual diagram of the impact of acid.
Fig. 1 Distribution of total and fake news shares.
Fig. 2 2D QWs of different propagation lengths.
Fig. 1 Impacts of intensified acidification on stream pH and calcium concentration. Impacts of intensified acidification on stream pH and calcium concentration.
Fig. 1 HDH complex. HDH complex. (A and B) Negative-stain electron micrographs of K. stuttgartiensis HDH alone in the absence and presence (300 mM) of.
Electronic structure of the oligomer (n = 8) at the UB3LYP/6-31G
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 4 DFT ωB97x/def2-TZVPP atomic charges on the sulfur atom of substituted thioaldehyde and AIMNet prediction with a different number of iterative passes.
Fig. 4 Control analyses ensured that the relation between rotational acceleration and changes in FA does not depend on thresholds. Control analyses ensured.
Fig. 3 ET dynamics on the control and treatment watersheds during the pretreatment and treatment periods. ET dynamics on the control and treatment watersheds.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 4 The mechanical performances of thermally stable click-ionogels.
Fig. 4 Evolution of fraction of sickled RBCs under hypoxia.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 2 NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ clean air policy. NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ.
Fig. 1 Size fractions of MPPs in different fertilizers.
Fig. 4 Projected [CO2]-induced deficits in protein and minerals (Fe and Zn) and cumulative changes in vitamin B and cumulative changes in vitamin E derived.
Fig. 1 Global occurrences of hydraulic fracturing–induced seismicity and potential models. Global occurrences of hydraulic fracturing–induced seismicity.
Fig. 2 Top 10 countries, ecoregions, conservation hotspots, and KBAs with the largest area of restoration hotspots. Top 10 countries, ecoregions, conservation.
Fig. 5 Global patterns in total fisheries catches from over more than 50 years as seen in three example stanzas. Global patterns in total fisheries catches.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Schematic of the proposed brain-controlled assistive hearing device
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 Map of δ18OVSMOW in groundwaters of the British Isles (left) and Strontium (87Sr/86Sr) biosphere map of Great Britain (right). Map of δ18OVSMOW.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 3 Directional rolling of an NP on a dsDNA fragment with flexibility gradient. Directional rolling of an NP on a dsDNA fragment with flexibility gradient.
Fig. 2 Simulations of possible doping positions and band structures.
Fig. 7 Correlation between the hierarchical structure and properties of S-PEDOT. Correlation between the hierarchical structure and properties of S-PEDOT.
Fig. 2 Mean field results. Mean field results. (A) Solutions P(x) to Eq. 4 for a range of T and wc = (B) Modulus ∣pk∣ of order parameters versus.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 2 Daily TNC pickups and drop-offs for an average Wednesday in fall 2016 (1). Daily TNC pickups and drop-offs for an average Wednesday in fall 2016.
Fig. 4 Evolution of rate constants over varying interaction strengths.
Fig. 3 Rural-urban gap of per capita income in China from 1978 to Rural-urban gap of per capita income in China from 1978 to The income of.
Fig. 5 Changes in the seasonal amplitude of streamflow and ET.
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 1 Attractive interaction between a doublon and a holon due to antiferromagnetic exchange interactions in half-filled 2D Mott insulators. Attractive.
Fig. 1 The combination of PCET and an RNR class I reaction enables heteroarene C─H alkylation using ketones and aldehydes as alkyl radical equivalents.
Fig. 3 Spatial distribution of the shoot density (high densities are represented in dark green and low ones in bright yellow) in a simulation of a P. oceanica.
Fig. 2 Time series of secularization versus GDP per capita, from four illustrative countries, over the 20th century. Time series of secularization versus.
Presentation transcript:

Fig. 1 Co-aggregation of Aβ16–22 and Aβ40 results in accelerated aggregation kinetics for Aβ40. Co-aggregation of Aβ16–22 and Aβ40 results in accelerated aggregation kinetics for Aβ40. (A) Primary sequence of Aβ16–22 and Aβ40, including the groups at each terminus. The central recognition motif KLVFF is highlighted in purple. (B) ThT fluorescence assays showing that the aggregation rate of Aβ40 increases as the ratio of Aβ16–22 to Aβ40 is increased (with the total peptide concentration held constant at 40 μM). (C) Simulation snapshots of the aggregation of six Aβ40 monomers into a β-sheet–rich hexamer at an Aβ40 concentration of 5 mM. At the start of the simulation (0 μs), all the peptides are in random coils, but as the simulation progresses, they aggregate into antiparallel, in-register β sheets (104 μs). This oligomer then unfolds, losing some of its β-sheet structure (230 μs) before a rearrangement in which the β sheets rearrange, forming a stable fibril, with each Aβ40 peptide containing three β strands (621 μs) engaged in parallel intermolecular hydrogen bonding. Samuel J. Bunce et al. Sci Adv 2019;5:eaav8216 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).