Chapter 16 Preview Objectives Thermochemistry Heat and Temperature

Slides:



Advertisements
Similar presentations
Thermochemistry the study of transfers of energy as heat that accompany chemical reactions and physical changes.
Advertisements

 Section 1 – Thermochemistry  Section 2 – Driving Force of Reactions.
Calorimetry Chapter 5. Calorimetry Since we cannot know the exact enthalpy of the reactants and products, we measure  H through calorimetry, the measurement.
Unit 2 – Matter and Energy Mrs. Callender. Lesson Essential Question: What is Thermochemistry?
Chapter 17 Energy and Rate of Reactions.  Thermochemistry – study of the transfer of energy as heat that accompanies chemical reactions and changes 
Chapter 16 Reaction Energy
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Table of Contents Chapter 16 Section 1 Thermochemistry Section 2.
 Section 1 – Thermochemistry  Section 2 – Driving Force of Reactions.
Reaction Energy and Reaction Kinetics Thermochemistry.
Thermochemistry The study of the changes in heat energy that accompany chemical reactions and physical changes.
Thermochemistry: The study of heat changes that occur during chemical reactions and physical changes of state.
Thermochemistry: The study of heat changes that occur during chemical reactions and physical changes of state.
Ch. 15: Energy and Chemical Change
Chapter 16 Preview Objectives Thermochemistry Heat and Temperature
Chapter 15.4 & 15.5 ENTHALPY AND CALORIMETRY.  Thermochemistry = heat changes that accompany chemical reactions and phase changes  Energy released 
 Section 1 – Thermochemistry  Section 2 – Driving Force of Reactions.
Unit 7 Test Review. quantity of heat needed to raise the temperature of 1 g of water by 1 C calorie.
Heat and States of Matter
Thermochemistry Thermochemistry is the study of the transfers of energy as heat that accompany chemical reactions and physical changes.
Chapter 16 Reaction Energy Thermochemistry  I can define temperature and state the units in which it is measured  I can define heat and state its units.
Specific Heat & Phase Changes. Specific Heat ____________ (c) – the amount of heat required to raise the temperature of 1 g of a substance 1 °C The units.
Section 5.5 Calorimetry. Objectives  Examine calorimetry in order to quantify heat changes in chemical processes.
What’s the MATTER: Specific Heat of Matter. Matter, Specific Heat of Matter At the conclusion of our time together, you should be able to: 1. Define specific.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Thermochemistry Virtually every chemical reaction is accompanied.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Objectives Define temperature and state the units in which it is.
What’s the MATTER: Specific Heat of Matter. Be Afraid… Be Very Afraid…
Ch. 16 Reaction Energy. Thermochemistry  Thermochemistry: the study of the transfers of energy as heat that accompany chemical reactions and physical.
Temperature and Specific Heat Capacity 11/5/10. I.Temperature & Heat  temperature and heat are not the same thing!  temperature = a measure of the average.
Kinetic Energy Energy an object possesses when in motion. Law of Conservation of Energy – in any physical or chemical change, energy can change form,
CHAPTER 10 Reaction Energy Visual Concepts Heat Chapter 10.
Thermodynamics Think Energy Chemical Reactions Energy & Temperature Measuring Energy Kinetic Energy and Heat ©2011 University of Illinois Board of Trustees.
REACTION ENERGY CHAPTER 16 PAGE 500. A. THERMOCHEMISTRY 1. Introduction a. Every chemical reaction causes a change in energy b. Endothermic or exothermic.
16.1 Thermochemistry. POINT > Define temperature and heat POINT > Define specific heat POINT > Describe enthalpy of reaction POINT > Define enthalpy of.
Ch.1: Matter and Change Introduction to Thermochemistry.
© Houghton Mifflin Harcourt Publishing Company 11A understand energy and its forms, including kinetic, potential, chemical, and thermal energies 11B understand.
Chapter 10 Causes of Change
Chapter 16 Reaction Energy
Thermochemistry.
Energy transfer varies from reaction to reaction.
Thermochemistry.
Thermochemistry The study of the changes in heat energy that accompany chemical reactions and physical changes.
Temperature and heat are related but not identical.
Thermochemistry Study of transfers of energy as heat that accompany chemical rxns and physical changes Part 1.
Reaction Energy Exothermic reaction of Thermite.
Energy & Calorimetry THERMOCHEMISTRY.
How to Use This Presentation
Thermodynamics.
Thermodynamics.
Thermochemistry The study of the changes in heat energy that accompany chemical reactions and physical changes.
Chapter 16 Thermochemistry
Bond Energy and Reaction Energy
Chapter 17 Thermochemistry
Thermochemistry Thermochemistry the study of the energy changes that accompany physical or chemical changes in matter. Changes may be classified.
Chapter 16 Reaction Energy
Thermochemistry.
Chapter 16 Preview Objectives Thermochemistry Heat and Temperature
Thermochemistry.
Thermochemistry.
Thermodynamics Lecture 1
Thermochemistry Chapter 16.
Thermochemistry: The study of heat changes that occur during chemical reactions and physical changes of state.
Ch.17 Thermochemistry.
Ch.17: Reaction Energy and Reaction Kinetics
Chapter 16 Thermochemistry
Reaction Energy.
Chapters 16 & 17 Thermochemistry.
Thermochemistry The study of the changes in heat energy that accompany chemical reactions and physical changes.
Chapter 16 Preview Objectives Thermochemistry Heat and Temperature
Presentation transcript:

Chapter 16 Preview Objectives Thermochemistry Heat and Temperature Specific Heat Enthalpy of Reaction Enthalpy of Formation Stability and Enthalpy of Formation Enthalpy of Combustion Calculating Enthalpies of Reaction Determining Enthalpy of Formation

Section 1 Thermochemistry Chapter 16 Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations. Explain enthalpy change, enthalpy of reaction, enthalpy of formation, and enthalpy of combustion. Solve problems involving enthalpies of reaction, enthalpies of formation, and enthalpies of combustion.

Chapter 16 Thermochemistry Section 1 Thermochemistry Chapter 16 Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually either absorb or release energy as heat. Thermochemistry is the study of the transfers of energy as heat that accompany chemical reactions and physical changes.

Chapter 16 Heat and Temperature Section 1 Thermochemistry Chapter 16 Heat and Temperature The energy absorbed or released as heat in a chemical or physical change is measured in a calorimeter. In one kind of calorimeter, known quantities of reactants are sealed in a reaction chamber that is immersed in a known quantity of water. Energy given off by the reaction is absorbed by the water, and the temperature change of the water is measured. From the temperature change of the water, it is possible to calculate the energy as heat given off by the reaction.

Heat and Temperature, continued Section 1 Thermochemistry Chapter 16 Heat and Temperature, continued Temperature is a measure of the average kinetic energy of the particles in a sample of matter. The greater the kinetic energy of the particles in a sample, the hotter it feels. For calculations in thermochemistry, the Celsius and Kelvin temperature scales are used. Celsius and Kelvin temperatures are related by the following equation. K = 273.15 + °C

Heat and Temperature, continued Section 1 Thermochemistry Chapter 16 Heat and Temperature, continued The amount of energy transferred as heat is usually measured in joules. A joule is the SI unit of heat as well as all other forms of energy. Heat can be thought of as the energy transferred between samples of matter because of a difference in their temperatures. Energy transferred as heat always moves spontaneously from matter at a higher temperature to matter at a lower temperature.

Section 1 Thermochemistry Chapter 16 Specific Heat The amount of energy transferred as heat during a temperature change depends on the nature of the material changing temperature, and on its mass. The specific heat of a substance is the amount of energy required to raise the temperature of one gram by one Celsius degree (1°C) or one kelvin (1 K). The temperature difference as measured in either Celsius degrees or kelvins is the same.

Specific Heat, continued Section 1 Thermochemistry Chapter 16 Specific Heat, continued Values of specific heat are usually given in units of joules per gram per Celsius degree, J/(g•°C), or joules per gram per kelvin, J/(g•K).

Specific Heat, continued Section 1 Thermochemistry Chapter 16 Specific Heat, continued Specific heat is calculated according to the equation given below. cp is the specific heat at a given pressure, q is the energy lost or gained, m is the mass of the sample, and ∆T is the difference between the initial and final temperatures. The above equation can be rearranged to given an equation that can be used to find the quantity of energy gained or lost with a change of temperature.

Equation for Specific Heat Section 1 Thermochemistry Chapter 16 Equation for Specific Heat Click below to watch the Visual Concept. Visual Concept

Specific Heat, continued Section 1 Thermochemistry Chapter 16 Specific Heat, continued Sample Problem A A 4.0 g sample of glass was heated from 274 K to 314 K, a temperature increase of 40. K, and was found to have absorbed 32 J of energy as heat. a. What is the specific heat of this type of glass? b. How much energy will the same glass sample gain when it is heated from 314 K to 344 K?

Specific Heat, continued Section 1 Thermochemistry Chapter 16 Specific Heat, continued Sample Problem A Solution Given: m = 4.0 g ∆T = 40. K q = 32 J Unknown: a. cp in J/(g•K) b. q for ∆T of 314 K → 344 K Solution: a.

Specific Heat, continued Section 1 Thermochemistry Chapter 16 Specific Heat, continued Sample Problem A Solution, continued Solution: b.

Chapter 16 Enthalpy of Reaction Section 1 Thermochemistry Chapter 16 Enthalpy of Reaction The energy absorbed as heat during a chemical reaction at constant pressure is represented by ∆H. H is the symbol for a quantity called enthalpy. Only changes in enthalpy can be measured. ∆H is read as “change in enthalpy.” An enthalpy change is the amount of energy absorbed by a system as heat during a process at constant pressure.

End of Chapter 16 Show