Blood diffusion and Th1-suppressive effects of galectin-9–containing exosomes released by Epstein-Barr virus–infected nasopharyngeal carcinoma cells by.

Slides:



Advertisements
Similar presentations
Figure 1. Phenotypic and functional characterization of nasopharyngeal carcinoma (NPC)– and healthy donor (HD)–derived exosomes. A) Electron microscopy.
Advertisements

Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum by Cristina Bergamaschi, Jenifer Bear, Margherita Rosati,
Involvement of suppressors of cytokine signaling in toll-like receptor–mediated block of dendritic cell differentiation by Holger Bartz, Nicole M. Avalos,
IFNα-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity.
Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells by Jordy Leung, Annie Pang, Wai-Hung Yuen, Yok-Lam.
by Kathryn Lagrue, Alex Carisey, David J
Tissue-Specific Expression of Functional Platelet Factor XI Is Independent of Plasma Factor XI Expression by Chang-jun Hu, Frank A. Baglia, David C.B.
by Masih Ostad, Margareta Andersson, Astrid Gruber, and Anne Sundblad
by Rosemary E. Smith, Vanshree Patel, Sandra D. Seatter, Maureen R
The TCL1 oncoprotein inhibits activation-induced cell death by impairing PKCθ and ERK pathways by Gilles Despouy, Marjorie Joiner, Emilie Le Toriellec,
The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages by Barbara Scheuerer, Martin Ernst,
CD271 on Melanoma Cell Is an IFN-γ-Inducible Immunosuppressive Factor that Mediates Downregulation of Melanoma Antigens  Junpei Furuta, Takashi Inozume,
Volume 128, Issue 7, Pages (June 2005)
Annexin A2 tetramer activates human and murine macrophages through TLR4 by Jennifer F. A. Swisher, Nicholas Burton, Silvia M. Bacot, Stefanie N. Vogel,
Galectin-9 binding to Tim-3 renders activated human CD4+ T cells less susceptible to HIV-1 infection by Shokrollah Elahi, Toshiro Niki, Mitsuomi Hirashima,
Volume 129, Issue 3, Pages (September 2005)
Activity of vincristine, L-ASP, and dexamethasone against acute lymphoblastic leukemia is enhanced by the BH3-mimetic ABT-737 in vitro and in vivo by Min.
Reticulocyte-secreted exosomes bind natural IgM antibodies: involvement of a ROS-activatable endosomal phospholipase iPLA2 by Lionel Blanc, Céline Barres,
Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages by Céline Barrès, Lionel Blanc, Pascale Bette-Bobillo,
Autocrine release of interleukin-9 promotes Jak3-dependent survival of ALK+ anaplastic large-cell lymphoma cells by Lin Qiu, Raymond Lai, Quan Lin, Esther.
Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells by Wuding Zhou, Hetal Patel, Ke Li, Qi Peng, Marie-Bernadette.
Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells by Aleksandar Petlickovski,
Increased survival is a selective feature of human circulating antigen-induced plasma cells synthesizing high-affinity antibodies by Inés González-García,
Identification of DJ-1/PARK-7 as a determinant of stroma-dependent and TNF-α–induced apoptosis in MDS using mass spectrometry and phosphopeptide analysis.
by Herbert Bosshart, and Ruth F. Jarrett
Enhancement of the host immune responses in cutaneous T-cell lymphoma by CpG oligodeoxynucleotides and IL-15 by Maria Wysocka, Bernice M. Benoit, Sarah.
Interferon-γ Prevents Apoptosis in Epstein-Barr Virus-Infected Natural Killer Cell Leukemia in an Autocrine Fashion by Shin-ichi Mizuno, Koichi Akashi,
Chronic neutropenia mediated by Fas ligand
by Véronique Le Cabec, Jero Calafat, and Niels Borregaard
Cathepsin-B-dependent apoptosis triggered by antithymocyte globulins: a novel mechanism of T-cell depletion by Marie-Cécile Michallet, Frederic Saltel,
Volume 130, Issue 2, Pages (February 2006)
Therapeutic effect of idiotype-specific CD4+ T cells against B-cell lymphoma in the absence of anti-idiotypic antibodies by Katrin U. Lundin, Peter O.
Α-defensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4 by Lucinda Furci, Francesca Sironi, Monica Tolazzi,
by Asim Khwaja, and Louise Tatton
CD11c+ dendritic cells and plasmacytoid DCs are activated by human cytomegalovirus and retain efficient T cell-stimulatory capability upon infection by.
Efficient TRAIL-R1/DR4-Mediated Apoptosis in Melanoma Cells by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)  Bahtier M. Kurbanov, Christoph.
Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor α expression by inducing.
Lipid raft-associated protein sorting in exosomes
by Subburaj Ilangumaran, Anne Briol, and Daniel C. Hoessli
Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival by Diana Starlets, Yael Gore, Inbal Binsky, Michal Haran, Nurit.
by Yuko Kimura, Takashi Miwa, Lin Zhou, and Wen-Chao Song
Human osteoarthritic chondrocytes are impaired in matrix metalloproteinase-13 inhibition by IFN-γ due to reduced IFN-γ receptor levels  R. Ahmad, M. El.
Generation of Highly Cytotoxic Natural Killer Cells for Treatment of Acute Myelogenous Leukemia Using a Feeder-Free, Particle-Based Approach  Jeremiah.
Stimulation of the B-cell receptor activates the JAK2/STAT3 signaling pathway in chronic lymphocytic leukemia cells by Uri Rozovski, Ji Yuan Wu, David.
Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion by John D. Belcher, Paul H. Marker,
Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia by Shahrzad Jalali, Tammy Price-Troska, Jonas Paludo, Jose Villasboas, Hyo-Jin.
Volume 13, Issue 1, Pages (January 2006)
Andrew Wilber, Michael Lu, Michael C. Schneider  Molecular Therapy 
Volume 14, Issue 1, Pages (January 2004)
Volume 1, Issue 7, Pages (June 1998)
Anti-Inflammatory Activity of Sertaconazole Nitrate Is Mediated via Activation of a p38– COX-2–PGE2 Pathway  Runa Sur, Jeffrey M. Babad, Michelle Garay,
Cell-derived vesicles exposing coagulant tissue factor in saliva
GRASP65, a Protein Involved in the Stacking of Golgi Cisternae
Apoptosis Induction by SAHA in Cutaneous T-Cell Lymphoma Cells Is Related to Downregulation of c-FLIP and Enhanced TRAIL Signaling  Nadya Al-Yacoub, Lothar.
Anke Sparmann, Dafna Bar-Sagi  Cancer Cell 
Myeloma cell–derived Runx2 promotes myeloma progression in bone
Ekatherina Vassina, Martin Leverkus, Shida Yousefi, Lasse R
Volume 19, Issue 5, Pages (November 2003)
PPARδ Is a Type 1 IFN Target Gene and Inhibits Apoptosis in T Cells
Amphiregulin Exosomes Increase Cancer Cell Invasion
Human CD4+ T Lymphocytes with Remarkable Regulatory Functions on Dendritic Cells and Nickel-Specific Th1 Immune Responses  Andrea Cavani, Francesca Nasorri,
Complement C5 but not C3 is expendable for tissue factor activation by cofactor-independent antiphospholipid antibodies by Nadine Müller-Calleja, Svenja.
Valerie R. Wiersma, Marco de Bruyn, Robert J
Bcl-2 and bcl-xL Antisense Oligonucleotides Induce Apoptosis in Melanoma Cells of Different Clinical Stages  Robert A. Olie, Christoph Hafner, Renzo Küttel,
Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner  Juan Lama, Aram Mangasarian,
Volume 23, Issue 2, Pages (August 2005)
Sean P. Cullen, Conor J. Kearney, Danielle M. Clancy, Seamus J. Martin 
Elva Dı́az, Suzanne R Pfeffer  Cell 
by Fabian C. Verbij, Nicoletta Sorvillo, Paul H. P
Interleukin-17 is Produced by Both Th1 and Th2 Lymphocytes, and Modulates Interferon-γ- and Interleukin-4-Induced Activation of Human Keratinocytes  Cristina.
Presentation transcript:

Blood diffusion and Th1-suppressive effects of galectin-9–containing exosomes released by Epstein-Barr virus–infected nasopharyngeal carcinoma cells by Jihène Klibi, Toshiro Niki, Alexander Riedel, Catherine Pioche-Durieu, Sylvie Souquere, Eric Rubinstein, Sylvestre Le Moulec, Joël Guigay, Mitsuomi Hirashima, Fethi Guemira, Dinesh Adhikary, Josef Mautner, and Pierre Busson Blood Volume 113(9):1957-1966 February 26, 2009 ©2009 by American Society of Hematology

Specific detection of galectin-9–containing exosomes in the plasma of mice xenografted with NPC tumor lines. Specific detection of galectin-9–containing exosomes in the plasma of mice xenografted with NPC tumor lines. (A) A significant amount of galectin-9 is detected by ELISA in crude plasma samples from mice xenografted with NPC tumor lines (C15, C17, and C666-1), but not control mice either without xenografts (tumor-free) or xenografted with a non-NPC carcinoma tumor line (non-NPC). Assays were performed in triplicate on 3 plasma samples from 3 different mice. (B) A series of plasma samples were collected from 6 mice carrying C15 tumors of various sizes. Galectin-9 concentration in these samples is proportional to the tumor volume (y = 3.2× + 1.7, R2 = 0.994). (C) Captures with anti–HLA class II beads were performed on low-density vesicles (110-kg pellets) derived from pools of murine plasmas. Samples collected with anti–class II beads are designated nos. 3 and 6 (class II). Control samples collected with beads carrying nonspecific Ig are nos. 2 and 5 (NS Ig). In addition to plasma material, protein extracts from the C17 and the non-NPC xenografted tumors were used as controls for Western blot analyses (nos. 1 and 4). (D) Numerous vesicles approximately 70 nm in diameter are captured by HLA class II beads and visualized by electron microscopy when these procedures are applied to plasma vesicles from C17-xenografted but not control mice. Scale bar represents 500 nm. In the inset, 2 vesicles at original magnification (× 4). (E) Western blot analysis detects galectin-9, CD9, CD63, and the DR-α chain in C17 plasma vesicles. In contrast, none of these molecules are detected when the capture is performed on control mouse plasma. Note that CD63 is much more concentrated in C17 exosomes than in the tumor extract. Gp96, which is a cytoplasmic membrane protein, is detected in the C17 and non-NPC tumor extracts (lanes 1 and 4) but not in C17 exosomes (lane 3). Jihène Klibi et al. Blood 2009;113:1957-1966 ©2009 by American Society of Hematology

Specific detection of galectin-9–containing exosomes in the plasma of NPC patients. Specific detection of galectin-9–containing exosomes in the plasma of NPC patients. (A) Captures with anti–HLA class II beads were performed on low-density vesicles (110-kg pellets) derived from human plasma samples. Initially, plasmas were collected from 2 NPC patients (NPC A and B; samples 2, 3, 4, and 5), 1 patient with a non-NPC head and neck carcinoma (non-NPC TA; samples 6 and 7), and 1 healthy donor (samples 8 and 9). In each case, beads coated with nonspecific Ig (NS Ig) were used as negative controls. In addition to plasma material, a protein extract from the C17-xenografted tumor was used as a positive control for Western blot detection (no. 1). Clinical and pathologic data on donor patients are provided in Tables S1 and S3. (B) Numerous bilamellar vesicles approximately 70 nm in diameter are visualized by HLA class II capture and electron microscopy when these procedures are applied to plasma vesicles from NPC patients but not control subjects. Scale bar represents 500 nm. In the inset, 2 vesicles at original magnification (× 4). (C) In parallel experiments, Western blot analysis revealed expression of galectin-9, CD9, CD63, and the α chain of the DR molecule in NPC plasma vesicles. In contrast, none of these proteins is detected when the same procedure is applied to control plasmas. Gp96 is only detected in the tumor extract. (D) Galectin-9–carrying exosomes are captured by anti–HLA class II beads from 4 additional samples of NPC plasmas (NPC C, D, E, and F) but not from 2 control subjects with non-NPC tumors (non-NPC TB and TC). Clinical and pathologic data on donor patients are in Tables S1 and S3. Consistent results were obtained for 11 NPC and 5 non-NPC additional plasma samples (see Tables S1, S2, and S4 and Figures S1 and S2). Jihène Klibi et al. Blood 2009;113:1957-1966 ©2009 by American Society of Hematology

Intact exosomes protect galectin-9 against trypsin digestion. Intact exosomes protect galectin-9 against trypsin digestion. (A) Western blot detection of DR-α, CD63, and galectin-9 in exosomes released by C17 cells and purified on a sucrose gradient. Gp96 is a cytoplasmic protein typically absent from exosomes. (Left side) C17 total extract. (Right side) Exosome proteins. (B) Galectin-9 contained in C17 exosomes is quantified in a Western blot analysis by comparison to a series of recombinant galectin-9 samples ranging from 1 to 25 ng (rec gal-9). On average, 2 to 5 ng galectin-9 are contained in 50 μg exosome proteins. (C) Trypsin digestion assay, the same amount of C17 exosomes was used for each condition (35 μg total exosome proteins). They were subjected either to Triton lysis or mock treatment before incubation with trypsin. Two different trypsin concentrations, 15 μg/mL (high trypsin) or 0.01 μg/mL (low trypsin), were used in distinct experiments. For samples treated with low amounts of trypsin, short and long exposures of the blotted membrane are presented. Controls are displayed in lane 1 (no Triton lysis, no trypsin addition, and incubation at 4°C), lane 5 (no Triton, no trypsin, 37°C), and lane 9 (Triton lysis without trypsin addition and incubation at 37°C). Triton lysis of exosomes greatly enhances trypsin digestion of exosome-bound galectin-9 as shown in lanes 6, 7, and 8 (Triton lysis followed by trypsin digestion) as compared with lanes 2, 3, and 4 (mock treatment followed by trypsin digestion). After Triton lysis, undigested galectin-9 remained detectable only for the shortest time of incubation (5 minutes) with the smaller concentration of trypsin (0.01 μg/mL; lane 6). In lane 9, a substantial decrease of galectin-9 is observed despite the absence of trypsin, suggesting an effect of endogenous proteolytic enzymes after Triton lysis. Jihène Klibi et al. Blood 2009;113:1957-1966 ©2009 by American Society of Hematology

Galectin-9 CRD2 is presented at the surface of NPC exosomes. Galectin-9 CRD2 is presented at the surface of NPC exosomes. Low-density vesicles (110-kg pellets) released by C17 or C666-1 NPC cells were incubated with magnetic beads coated with the 9M1-3 monoclonal antibody directed to the CRD2 of galectin-9. Beads coated with purified isotype-matched nonspecific Ig were used for control reactions. (Top panel) Numerous exosomes released by C17 (A) or C666-1 (B) are captured by anti-CRD2, but not control beads, and visualized by electron microscopy. (Middle panel) Western blot analysis detects the DR-α and galectin-9 proteins in C17 (C) and C666-1 (D) exosomes, whereas no similar proteins are recovered from control beads coated with irrelevant IgG. Positive controls are provided by total C17 and C666-1 cell extracts in the left lanes of panels C and D, respectively. (Bottom panel) A small amount of the galectin-9 CRD2 is detected at the surface of live C17 cells by flow cytometry (E), whereas it is absent at the surface of C666-1 (F) cells. Jihène Klibi et al. Blood 2009;113:1957-1966 ©2009 by American Society of Hematology

Recombinant galectin-9 induces apoptosis in EBV-specific CD4+ T cells. Recombinant galectin-9 induces apoptosis in EBV-specific CD4+ T cells. (A) Intense membrane expression of Tim-3 is detected on 4 EBV-specific CD4+ T cell clones of Th1 subtype but not on polyclonal CD4+ T cells sorted directly from PBMCs (CD4+ PBMC; gray curve, control staining). EBV-specific clones are directed against the EBV-proteins EBNA3C (GB3C), gp350 or BLLF1 (JM1H2), EBNA1, and BZLF1. (B) A recombinant modified form of galectin-9 with increased stability (Gal-9 NC) induces apoptosis in JM1H2 CD4+ T cells with an ID50 of approximately 100 pg/mL (apoptosis was assessed according to the percentage of annexin V–positive cells). (C) Recombinant wild-type galectin-9 (gal-9 WT) at a concentration of 100 pg/mL induces apoptosis in GB3C T cells. Induction of apoptosis is suppressed by preincubation of the T cells with 10 μg/mL blocking anti–Tim-3 monoclonal antibody, but not a control IgG. Jihène Klibi et al. Blood 2009;113:1957-1966 ©2009 by American Society of Hematology

NPC exosomes induce apoptosis in EBV-specific CD4+ T cells through galectin-9/Tim-3 interaction. NPC exosomes induce apoptosis in EBV-specific CD4+ T cells through galectin-9/Tim-3 interaction. (A) NPC exosomes (C17) containing galectin-9 induce apoptosis in EBV-specific CD4+ T cells (GB3C clone, anti-EBNA3C) without significant effects on polyclonal CD4+ T cells sorted directly from PBMCs (CD4+ PBMC). Tested cells were incubated for 5 hours with purified C17 exosomes at a final concentration of 100 μg/mL exosomal proteins (corresponding approximately to 10 ng/mL galectin-9; Exo C17). Control cells were incubated without exosomes (W/O Exo). Cell clusters visible at the top of the upper right portions of the graphs are related to nonspecific necrosis. (B,C) NPC exosomes (C17) induce apoptosis in EBV-specific CD4+ cells from the JM1H2 clone (anti-gp350). Apoptosis of CD4+ T cells is almost entirely suppressed by preincubating the T cells with a blocking anti–Tim-3 antibody or by preincubating the exosomes with the 9M1-3 antibody directed to the galectin-9 CRD2. In contrast, apoptosis induced by NPC exosomes is not prevented by a nonspecific Ig (NS IgG) or a monoclonal antibody directed to the extracellular portion of the DR-α chain (anti–DR-α, DA6.147). Flow cytometry graphs representative of some experiments summarized in panel B are displayed in panel C. PI-positive/annexin V–negative cells were consistently detected in the presence of anti–Tim-3 and anti–galectin-9 antibodies even in the absence of NPC exosomes, without satisfactory explanation. (D) NPC exosomes (C17) induce apoptosis in EBNA1-specific CD4+ cells. Percentages of annexin V–positive and annexin V/PI-positive cells are presented on the right side of the panel. Spontaneous cell death is more prevalent in this clone compared with GB3C and JM1H2: 3.8% annexin V and 21.42% annexin V/PI-positive cells in the absence of exosomes (W/O Exo). Nevertheless, the percentage of annexin V–positive cells is dramatically increased by the incubation with C17 exosomes, in the absence of blocking antibodies (Exo+ NS IgG). This effect is almost entirely reversed by anti–Tim-3 or anti–galectin-9 antibodies (Exo+ anti–Tim-3, Exo+ anti–Gal-9). Jihène Klibi et al. Blood 2009;113:1957-1966 ©2009 by American Society of Hematology

Exosomes from HeLa cells induce apoptosis in EBV-specific CD4+ T cells only when they contain galectin-9. Exosomes from HeLa cells induce apoptosis in EBV-specific CD4+ T cells only when they contain galectin-9. (A) Purified exosomes released by transfected HeLa cells expressing either GFP or galectin-9 (l-isoform) were analyzed by Western blot. The first 2 lanes on the left contain total extracts from cells transfected with GFP and galectin-9 (Cell prot). Exosome proteins are analyzed in the next 2 lanes (Exo prot). CD63, which is barely detectable in total cell extracts, is much more abundant in purified exosomes. In contrast to CD63, galectin-9 is detected in exosomes only when these are derived from cells transfected with the galectin-9 gene. (B,C) There is no induction of apoptosis in CD4+ T cells (EBNA1 and JM1H2 clones) treated with control HeLa exosomes (Exo Hela-GFP). In contrast, treatment with galectin-9–positive exosomes induces apoptosis in a large majority of the EBNA1-specific CD4+ cells (Exo Hela Gal-9). For JM1H2 cells (specific for gp350), the rate of apoptosis induced by Hela galectin-9 exosomes amount to 60% of the rate observed with C17 exosomes at the same concentration. It is entirely prevented by preincubation of target cells with the anti–Tim-3 antibody. Flow cytometry graphs representative of some experiments summarized in panel B are displayed in panel C. Jihène Klibi et al. Blood 2009;113:1957-1966 ©2009 by American Society of Hematology