Parallel Lines & Transversals Review: 1. Angles whose measures have a sum of 90° are _______________ . 2. Vertical angles have equal measures, so they are ______________. 3. Angles whose measures have a sum of 180° are ______________. 4. An angle that measures less than 90° is a(n) ____________ angle. 5 An angle that measures less than 90° is a(n) ____________ angle. complementary congruent supplementary acute obtuse
Parallel Lines & Transversals Learn to identify parallel and perpendicular lines and the angles formed by a transversal.
Parallel Lines & Transversals Vocabulary parallel lines transversal
Parallel Lines & Transversals Parallel lines are lines in a plane that never meet, like a set of perfectly straight, infinite train tracks. A transversal is a line that intersects two or more lines that lie in the same plane. Transversals to parallel lines form angles with special properties.
Parallel Lines & Transversals The sides of the windows are transversals to the top and bottom. The top and bottom of the windows are parallel.
Parallel Lines & Transversals You cannot tell if angles are congruent by measuring because measurement is not exact. Caution!
Parallel Lines & Transversals Additional Example 1: Identifying Congruent Angles Formed by a Transversal Measure the angles formed by the transversal and parallel lines. Which angles seem to be congruent? 1, 3, 5, and 7 all measure 150° and appear to be congruent. 2, 4, 6, and 8 all measure 30° and appear to be congruent.
Additional Example 1 Continued Angles circled in blue appear to be congruent to each other, and angles circled in red appear to be congruent to each other. 1 @ 3 @ 5 @ 7 2 @ 4 @ 6 @ 8
Check It Out: Example 1 Measure the angles formed by the transversal and parallel lines. Which angles seem to be congruent? 1 2 3 4 5 6 7 8 1, 4, 5, and 8 all measure 36° and appear to be congruent. 2, 3, 6, and 7 all measure 144° and appear to be congruent.
Check It Out: Example 1 Continued Angles marked in blue appear to be congruent to each other, and angles marked in red appear to be congruent to each other. 1 @ 4 @ 5 @ 8 2 @ 3 @ 6 @ 7 1 2 3 4 5 6 7 8
Some pairs of the eight angles formed by two parallel lines and a transversal have special names.
The symbol for parallel is ||. The symbol for perpendicular is . Writing Math
Additional Example 2A: Finding Angle Measures of Parallel Lines Cut by Transversals In the figure, line l || line m. Find the measure of the angle. 4 The 124 angle and 4 are corresponding angles. m4 = 124°
Additional Example 2B: Finding Angle Measures of Parallel Lines Cut by Transversals Continued In the figure, line l || line m. Find the measure of the angle. 2 2 is supplementary to angle 124°. m2 + 124° = 180° –124° –124° m2 = 56°
Additional Example 2C: Finding Angle Measures of Parallel Lines Cut by Transversals Continued In the figure, line l || line m. Find the measure of the angle. 6 6 is supplementary to angle 6. m6 + 124° = 180° –124° –124° m6 = 56° m6 = 56°
m7 = 144° Check It Out: Example 2A In the figure, line n || line m. Find the measure of the angle. 7 The 144 angle and 7 are alternate exterior angles. 1 144° 3 4 5 6 7 8 m n m7 = 144°
Check It Out: Example 2B In the figure, line n || line m. Find the measure of the angle. 1 1 is supplementary to the 144° angle. 1 144° 3 4 5 6 7 8 m n m1 + 144° = 180° –144° –144° m 1 = 36°
m5 = 36° Check It Out: Example 2C In the figure, line n || line m. Find the measure of the angle. 5 5 and 1 are corresponding angles. 1 144° 3 4 5 6 7 8 m n m5 = 36°
Lesson Quiz for Student Response Systems Lesson Quizzes Standard Lesson Quiz Lesson Quiz for Student Response Systems 20
Lesson Quiz In the figure, a || b. 1. Name the angles congruent to 3. 1, 5, 7 2. Name all the angles supplementary to 6. 1, 3, 5, 7 3. If m1 = 105° what is m3? 105° 4. What is m6? 75°
Lesson Quiz for Student Response Systems 1. In the figure, x || y. Identify the angles congruent to 3. A. 1, 2, 4 B. 2, 4, 6 C. 4, 5, 6 D. 1, 5, 8 22
Lesson Quiz for Student Response Systems 2. In the figure, x || y. If m5 = 115°, what is m7? A. 25° B. 65° C. 75° D. 115° 23