Class Opener: Find the next two terms of each pattern. Then write a rule to describe the pattern. 1,3,5,7,9,11……… -2,-4,-6,-8,-10,-12…….. .2,1,5,25,125,625……….

Slides:



Advertisements
Similar presentations
Warm-up Finding Terms of a Sequence
Advertisements

Find the next two numbers in the pattern
I can identify and extend patterns in sequences and represent sequences using function notation. 4.7 Arithmetic Sequences.
A geometric sequence is a list of terms separated by a constant ratio, the number multiplied by each consecutive term in a geometric sequence. A geometric.
RECURSIVE PATTERNS WRITE A START VALUE… THEN WRITE THE PATTERN USING THE WORDS NOW AND NEXT: NEXT = NOW _________.
Arithmetic Sequences ~adapted from Walch Education.
Sequences and Series It’s all in Section 9.4a!!!.
12.2: Arithmetic Sequences. Position vs. value… Sequence: Notation.
Sullivan Algebra and Trigonometry: Section 13.2 Objectives of this Section Determine If a Sequence Is Arithmetic Find a Formula for an Arithmetic Sequence.
Homework Questions. Number Patterns Find the next two terms, state a rule to describe the pattern. 1. 1, 3, 5, 7, 9… 2. 16, 32, 64… 3. 50, 45, 40, 35…
Patterns and Sequences
12.2 & 12.5 – Arithmetic Sequences Arithmetic : Pattern is ADD or SUBTRACT same number each time. d = common difference – If add: d positive – If subtract:
Defining and Using Sequences and Series
Homework Questions. Number Patterns Find the next two terms, state a rule to describe the pattern. 1. 1, 3, 5, 7, 9… 2. 16, 32, 64… 3. 50, 45, 40, 35…
Acc. Coordinate Algebra / Geometry A Day 36
Arithmetic Sequences In an arithmetic sequence, the difference between consecutive terms is constant. The difference is called the common difference. To.
Chapter 3: Linear Functions
Lesson 11.2 Arithmetic Sequences The slope and the common difference.
Essential Questions Introduction to Sequences
Recursive Formulas for Sequences Algebra II CP Mrs. Sweet
Sequences & Series: Arithmetic, Geometric, Infinite!
+ Lesson 3B: Geometric Sequences + Ex 1: Can you find a pattern and use it to guess the next term? A) 3, 9, 27, … B) 28, 14, 7, 3.5,... C) 1, 4, 9, 16,...
Lesson 11.4 Geometric Sequences. Warm Up ½ A geometric sequence is a sequence in which the ratio of successive terms is the same number, r, called.
Homework Questions. Recursive v. Explicit Get out notes and get ready!
Arithmetic Recursive and Explicit formulas I can write explicit and recursive formulas given a sequence. Day 2.
Lesson 3A: Arithmetic Sequences Ex 1: Can you find a pattern and use it to guess the next term? A) 7, 10, 13, 16,... B) 14, 8, 2, − 4,... C) 1, 4, 9,
Warm up Write the exponential function for each table. xy xy
Ch.9 Sequences and Series Section 1 - Mathematical Patterns.
Over Lesson 7–7 5-Minute Check 1 Describe the sequence as arithmetic, geometric or neither: 1, 4, 9, 16, …? Describe the sequence as arithmetic, geometric,
Why isn’t (1, 1) a solution of the system of linear inequalities y > -x and y > x +1?
Recognize and extend arithmetic sequences
Review Find the explicit formula for each arithmetic sequence.
4-7 Arithmetic Sequences
11.2 Arithmetic Sequences.
Patterns and Sequences
Arithmetic Sequences Explicit Formulas.
Finding the n th term (generating formula)
Warm up f(x) = 3x + 5, g(x) = x – 15, h(x) = 5x, k(x) = -9
Sequences and Series.
Patterns & Sequences Algebra I, 9/13/17.
constant difference. constant
Day 93 Explicit and recursive form for sequences (day 1)
4.7: Arithmetic sequences
Arithmetic Sequences.
Warm up Write the exponential function for each table. x y x
Standard and Learning Targets
9.4 Sequences.
Geometric Sequences.
4-7 Sequences and Functions
Day 94 Explicit and recursive form for sequences (day 2)
Warm up f(x) = 3x + 5, g(x) = x – 15, h(x) = 5x, k(x) = -9
Arithmetic Sequences In an arithmetic sequence, the difference between consecutive terms is constant. The difference is called the common difference. To.
Bellwork Find the fifth term of the sequence: an = 3n + 2
Key Words; Term, Expression
Arithmetic Sequence A sequence of terms that have a common difference between them.
Silent Do Now (5 minutes)
4.9 – arithmetic sequences
Introduction to Sequences
Warm Up.
The nth term, Un Example If we are given a formula for Un (th nth term) where find the first five terms of the sequence Un = 3n + 1.
Module 3 Arithmetic and Geometric Sequences
Write the recursive and explicit formula for the following sequence
Chapter 9.1 Introduction to Sequences
Arithmetic Sequence A sequence of terms that have a common difference between them.
Arithmetic Sequence A sequence of terms that have a common difference (d) between them.
Module 3 Arithmetic and Geometric Sequences
Finding the nth term Example
4-7 Arithmetic Sequences
Sequences That was easy
Homework Questions.
Presentation transcript:

Class Opener: Find the next two terms of each pattern. Then write a rule to describe the pattern. 1,3,5,7,9,11……… -2,-4,-6,-8,-10,-12…….. .2,1,5,25,125,625………. 50,45,40,35,30,25……….. 512, 256, 128,64,32,16…… 2,5,8,11,14,17……………… 16,32,64,…………

Quick Notes: You can describe some patterns with a sequence, or ordered list of numbers. Each number in a sequence is a term. A recursive formula defines the terms in a sequence by relating each term to the ones before it. A formula that expresses the nth term in terms of n is an explicit formula.

Quick Write: When, how and why are patterns useful in our everyday lives?

Group Activity Ground Rules: For each Group: Checker: ensures that all group members understand or agree, and that each member is ready to present if called upon. Facilitators: Read the questions to the group, focus the conversation on the current task, and encourage progress towards the next question.

Group Activity Ground Rules: Managers: Pick up any materials needed for the activity and keep track of time. Recorders: take note of the groups responses, from the ongoing discussion points through final agreements. (at the same time, each group member will keep a personal record of the answers on their own copy of each station worksheet)