Three -cluster description of the 12 C nucleus A.V. Malykh (JINR, BLTP) The work was done in collaboration with O.I. Kartavtsev, S.I. Fedotov.

Slides:



Advertisements
Similar presentations
I0 I Probability Neutron Attenuation (revisited) X Recall t = N t
Advertisements

Neutron-induced Reactions
Accelerator Physics, JU, First Semester, (Saed Dababneh).
Electromagnetic form factors in the relativized Hypercentral CQM E. Santopinto Trieste 22_26 May 2006 M. Ferraris, M.Giannini, M. Pizzo, E. Santopinto,
Kaonic nuclear clusters with ALICE E. Fragiacomo INFN Trieste Convegno Nazionale sulla Fisica di ALICE Vietri sul Mare – 30 maggio 2006.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
3224 Nuclear and Particle Physics Ruben Saakyan UCL
The role of the isovector monopole state in Coulomb mixing. N.Auerbach TAU and MSU.
Chapter 6 The Hydrogen Atom.
4.6 Perform Operations with Complex Numbers
1 Analysis of Random Mobility Models with PDE's Michele Garetto Emilio Leonardi Politecnico di Torino Italy MobiHoc Firenze.
Quantum Phase-Space Quark Distributions in the Proton Xiangdong Ji University of Maryland — EIC workshop, Jefferson Lab, March 16, 2004 —
Simple Linear Regression Analysis
Multiple Regression and Model Building
Clustering in 12Be: Determination of the Enhanced monopole strength
Ab Initio Calculations of Three and Four Body Dynamics M. Tomaselli a,b Th. Kühl a, D. Ursescu a a Gesellschaft für Schwerionenforschung, D Darmstadt,Germany.
Spectroscopy at the Particle Threshold H. Lenske 1.
Nicolas Michel Importance of continuum for nuclei close to drip-line May 20th, 2009 Description of drip-line nuclei with GSM and Gamow/HFB frameworks Nicolas.
Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei V.V. Samarin.
W A RICHTER UNIVERSITY OF THE WESTERN CAPE Shell-model studies of the rp reaction 25 Al(p,γ) 26 Si.
May/27/05 Exotic Hadron WS 1 Hypothetical new scaler particle X for  + and its search by the (K +, X + ) reaction T. Kishimoto Osaka University.
Single Particle Energies
15 N Zone 8 Zone 1 Zone 28 p Zone 1 Zone O Zone 1 Zone 4 Zone 8 Zone N 16 O p Reaction rates are used to determine relative abundance of elements.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.

Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
Exact Analytic Solutions in Three- Body Problems N.Takibayev Institute of Experimental and Theoretical Physics, Kazakh National University, Almaty
The R-matrix method and 12 C(  ) 16 O Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium 1.Introduction 2.The R-matrix formulation:
Reminder n Please return Assignment 1 to the School Office by 13:00 Weds. 11 th February (tomorrow!) –The assignment questions will be reviewed in next.
EURISOL User Group, Florence, Jan Spin-Dependent Pre-Equilibrium Exciton Model Calculations for Heavy Ions E. Běták Institute of Physics SAS,
25 9. Direct reactions - for example direct capture: Direct transition from initial state |a+A> to final state B +  geometrical.
Optical potential in electron- molecule scattering Roman Čurík Some history or “Who on Earth can follow this?” Construction of the optical potential or.
Lecture 5: Electron Scattering, continued... 18/9/2003 1
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
Cross Sections One of the most important quantities we measure in nuclear physics is the cross section. Cross sections always have units of area and in.
1 New horizons for MCAS: heavier masses and α-particle scattering Juris P. Svenne, University of Manitoba, and collaborators CAP 15/6/2015.
Lecture 16: Beta Decay Spectrum 29/10/2003 (and related processes...) Goals: understand the shape of the energy spectrum total decay rate sheds.
Self-similar solutions for A-dependences in relativistic nuclear collisions in the transition energy region. A.A.Baldin.
Lecture 1 & 2 © 2015 Calculate the mass defect and the binding energy per nucleon for a particular isotope.Calculate the mass defect and the binding.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
NUCLEAR LEVEL DENSITIES NEAR Z=50 FROM NEUTRON EVAPORATION SPECTRA IN (p,n) REACTION B.V.Zhuravlev, A.A.Lychagin, N.N.Titarenko State Scientific Center.
1 Systematic calculations of alpha decay half-lives of well- deformed nuclei Zhongzhou REN ( 任中洲 ) Department of Physics, Nanjing University, Nanjing,
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
L.D. Blokhintsev a, A.N. Safronov a, and A.A. Safronov b a Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia b Moscow State.
Pion-Induced Fission- A Review Zafar Yasin Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad, Pakistan.
PROPERTIES OF HIGH-ENERGY ISOSCALAR MONOPOLE EXCITATIONS IN MEDIUM-HEAVY MASS SPHERICAL NUCLEI M. L. Gorelik 1), S. Shlomo 2), B. A. Tulupov 3), M. H.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Adiabatic hyperspherical study of triatomic helium systems
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
Systematical Analysis of Fast Neutron Induced Alpha Particle Emission Reaction Cross Sections Jigmeddorj Badamsambuu, Nuclear Research Center, National.
Charm Mixing and D Dalitz analysis at BESIII SUN Shengsen Institute of High Energy Physics, Beijing (for BESIII Collaboration) 37 th International Conference.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Improvements of microscopic transport models stimulated by spallation data for incident energies from 113 to MeV Umm Al-Qura University and King.
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
Low energy scattering and charmonium radiative decay from lattice QCD
d(α,ɣ)6Li reaction and second lithium puzzle
Mean free path and transport parameters from Brueckner-Hartree-Fock
Open quantum systems.
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Fusion and neutron transfer reactions with weakly bound nuclei within time-dependent and coupled channel approaches VIACHESLAV SAMARIN Flerov Laboratory.
B. El-Bennich, A. Furman, R. Kamiński, L. Leśniak, B. Loiseau
直交条件模型を用いた16Oにおけるαクラスターガス状態の研究
Presentation transcript:

Three -cluster description of the 12 C nucleus A.V. Malykh (JINR, BLTP) The work was done in collaboration with O.I. Kartavtsev, S.I. Fedotov

1. Introduction The -particle is the most tightly bound nucleus, therefore the description in the framework of the -cluster model can be used for many systems. The -particle is the most tightly bound nucleus, therefore the description in the framework of the -cluster model can be used for many systems. The simplest system is 8 Be which has a near threshold resonance 8 Be(0 + 1 ) (with energy E 2 =92.04 keV and γ = 5.47 ± 0.25 eV) and therefore has two- -cluster structure. The simplest system is 8 Be which has a near threshold resonance 8 Be(0 + 1 ) (with energy E 2 =92.04 keV and γ = 5.47 ± 0.25 eV) and therefore has two- -cluster structure. 12 C also has near threshold resonance 12 C(0 + 2 ) which leads to -cluster structure of this state. This state (Hoyle state) was predicted to explain abundance of heavy elements in the universe. 12 C also has near threshold resonance 12 C(0 + 2 ) which leads to -cluster structure of this state. This state (Hoyle state) was predicted to explain abundance of heavy elements in the universe. Hoyle state 12 C(0 + 2 ) and reaction mechanism Hoyle state 12 C(0 + 2 ) and reaction mechanism Resonance mechanism Resonance mechanism The reaction of formation of the 12 C nucleus in the triple- low-energy collisions 3 8 Be + 12 C(0 + 2 ) 12 C + γ is of key importance for stellar nucleosynthesis as an unique possibility for helium burning that allows further synthesis of heavier elements. is of key importance for stellar nucleosynthesis as an unique possibility for helium burning that allows further synthesis of heavier elements. Nonresonance mechanism Nonresonance mechanism Experimental results show, that some of the lowest 12 C states decay in - particles channels. Experimental results show, that some of the lowest 12 C states decay in - particles channels.

12 C lowest energy levels 0 + states 0 + states Ground state is strongly bounded, therefore it has non-cluster structure. Fixing energy of the ground state gives a restriction on the behavior of the effective potentials at short distances. E gs = E(0 + 1 ) = MeV, R (1) exp = 2.48 ± 0.22 fm R (1) exp = 2.48 ± 0.22 fm Excited state has α-cluster structure. E r = E(0 + 2 ) = MeV, Г = 8.5 ± 1.0 eV Г = 8.5 ± 1.0 eV M 12 = 5.48 ± 0.22 fm 2 M 12 = 5.48 ± 0.22 fm 2 The wide resonance (0 + 3 state) was found in some experimental and theoretical works. E(0 + 3 ) =3.0 MeV, Г = 3.0 ±.7 MeV Г = 3.0 ±.7 MeV 1 + state has a non-α-cluster structure, but can decay only to α-particles therefore this decay is suppressed that lead to a very small width of this state despite large energy. The interesting point is to study the angular and energy correlation of three bosons being in the 1 + state. 1 + state has a non-α-cluster structure, but can decay only to α-particles therefore this decay is suppressed that lead to a very small width of this state despite large energy. The interesting point is to study the angular and energy correlation of three bosons being in the 1 + state. E( ) =5.44 MeV, E( ) =5.44 MeV, Г = 18.1 ± 2.8 eV Г = 18.1 ± 2.8 eV α + α + α

2. Effective interactions The effective potentials must be determined as an input for the -cluster model All the effects сonnected with both the internal structure of -particles and the identity of nucleons are incorporated in the effective potential. The effective potential V (x) is a sum of the Coulomb interaction and local short-range Ali-Bodmer-type potentials V s (x) The effective potential V (x) is a sum of the Coulomb interaction and local short-range Ali-Bodmer-type potentials V s (x) Besides, the additional three-body potential V 3 (ρ) as a simple Gaussian function of the hyper-radius ρ Besides, the additional three-body potential V 3 (ρ) as a simple Gaussian function of the hyper-radius ρ is introduced to describe the effects beyond the three-cluster approximation. The studies of the three- scattering allow one to reduce the uncertainty in the two-body effective potential which can be hardly determined only from the two-body data.

3. Aim Calculate the fine characteristics of the 12 C(0 + ) states (energies and root- mean-square (rms) radii of the ground (0 + 1 ) and excited (0 + 2 ) states, an extremely narrow width Г of the state and monopole transition matrix element M 12 ). Calculate the fine characteristics of the 12 C(0 + ) states (energies and root- mean-square (rms) radii of the ground (0 + 1 ) and excited (0 + 2 ) states, an extremely narrow width Г of the state and monopole transition matrix element M 12 ). Study dependence on the effective two- and three-body potentials Study dependence on the effective two- and three-body potentials Adjust the parameters of the two-body effective Ali-Bodmer-type potentials to fix the position and width of 8 Be at the experimental values and to fit the s-wave phase shift at low energy Adjust the parameters of the two-body effective Ali-Bodmer-type potentials to fix the position and width of 8 Be at the experimental values and to fit the s-wave phase shift at low energy Adjust the parameter of the three-body effective interactions to fix the energies of the ground and excited states and the rms radius of the ground state R (1) to known experimental data. Adjust the parameter of the three-body effective interactions to fix the energies of the ground and excited states and the rms radius of the ground state R (1) to known experimental data. Study the reaction mechanism of formation 12 C at low energies above the two-body resonance ( 8 Be). Study the reaction mechanism of formation 12 C at low energies above the two-body resonance ( 8 Be).

4. Method The Schrödinger equation (ħ = m = e = 1) in the scaled Jacobi coordinates x, y for three -particles reads In the following it is convenient to use the hyperspherical coordinates 0 ρ <, 0 i π /2, and 0 θ i π defined as

4.1 Eigenfunctions on the hypersphere In order to solve both the eigenvalue and scattering problems for Eq. (3) the total wave function is expanded in a series on a discrete set of normalized eigenfunctions Φ n of the following equation on the hypersphere where

4.2 System of HRE Given the expansion (5) of the total wave function, the Schrödinger equation (3) is reduced to the system of hyper-radial equations (HRE) where

4.3 Numerical procedure to solve equation on the hypersphere The eigenvalues λ n (ρ) and the eigenfunction Ф n (ρ,, θ) are calculated by using the variational method. Basis consists of a set of the symmetric hyperspherical harmonics (SHH) H nm a set of the symmetric hyperspherical harmonics (SHH) H nm a set of the ρ-dependent symmetrized functions which are chosen to describe the + 8 Be configuration of the wave function a set of the ρ-dependent symmetrized functions which are chosen to describe the + 8 Be configuration of the wave function where i (x) is a few Gaussian functions and function allow to describe the two-body wave function within the range of the nuclear potential V s and in the under-barrier region. Matrix elements Q nm (ρ), and P nm (ρ) are calculated by

4.4 Results of the variational calculation 4.4 (a) Eigenpotentials The eigenpotentials Un= [4λ n (ρ) + 15/4]/ρ 2 of the first, second and third channels are plotted with red, green, pink lines, respectively. The blue line shows the two-body asymptotic expression E 2α +q/ρ. E 2 = ± 0.05 keV E 2 = ± 0.05 keV q=13.30 KeV·fm q=13.30 KeV·fm The inset shows the effective potential near the turning point ρ t.

4.4 (b) The first channel eigenfunction Ф 1 Large ρ (ρ =45fm) The hyperradial function has the two-cluster structure that confirms the sequential mechanism of state decay with formation of α+ 8 Be at the first step. The hyperradial function has the two-cluster structure that confirms the sequential mechanism of state decay with formation of α+ 8 Be at the first step. Intermediate ρ (ρ =15fm) Intermediate ρ (ρ =15fm) The two-cluster structure widens; and the most important are the equilateral-triangle and the linear configuration. The two-cluster structure widens; and the most important are the equilateral-triangle and the linear configuration. Small ρ (ρ =5 fm) Small ρ (ρ =5 fm) The most important is the equilateraltriangle configuration. The most important is the equilateral-triangle configuration.

4.5 Boundary conditions for HRE Properties of the ground state and the excited resonance are determined by solving the eigenvalue problem (at E 0) for HRE (8), respectively. For the eigenvalue problem the hyperradial functions for the ground state f n (1) (ρ) have to be normalized and therefore For the eigenvalue problem the hyperradial functions for the ground state f n (1) (ρ) have to be normalized and therefore For the scattering problem at energy above the two-body resonance (E >E 2 α ), in view of 2-cluster asymptotic expression of the effective potential in the first channel U 1 (ρ) = [4λ 1 (ρ) + 15/4]/ρ 2 E 2 α +q/ρ (as shown in Fig. 1) the hyper-radial function f 1 (E) (ρ) can be written as For the scattering problem at energy above the two-body resonance (E >E 2 α ), in view of 2-cluster asymptotic expression of the effective potential in the first channel U 1 (ρ) = [4λ 1 (ρ) + 15/4]/ρ 2 E 2 α +q/ρ (as shown in Fig. 1) the hyper-radial function f 1 (E) (ρ) can be written as in the range of hyper-radius values ρ t. Here the wave number in the first channel k = E-E, F 0 (η k) and G 0 (η k) are the Coulomb functions with the parameter η=8/(3k) and δ E is the scattering phase shift. All other boundary conditions equal to zero.

Characteristics of 12 C states Energy of the ground state E gs Energy of the ground state E gs The resonance position E r and width Г as well as the non-resonant phase shift δ bg are defined by fitting the calculated near resonance phase shift δ E to the Wigner dependence on energy The resonance position E r and width Г as well as the non-resonant phase shift δ bg are defined by fitting the calculated near resonance phase shift δ E to the Wigner dependence on energy Root-mean-square (RMS) radii of the ground (i=1) and excited (i=2) states read Root-mean-square (RMS) radii of the ground (i=1) and excited (i=2) states read The monopole transition matrix element takes the form The monopole transition matrix element takes the form A sums is taken over N t nucleons and over N p protons, R cm is the center-of- mass position vector and ρ 2 i equals to

5. Numerical results 5.1 Two-body effective potentials Calculations have been performed with potentials which reproduce the experimental value of the resonance ( 8 Be) energy E 2 =92.04 keV Modified Ali-Bodmer potentials S. Ali and A. R. Bodmer. Nucl. Phys., 80:99, Modified Ali-Bodmer potentials S. Ali and A. R. Bodmer. Nucl. Phys., 80:99, A set of potentials 1-11 with parameters μ r -1 = 1.53 fm and μ a -1 = 2.85 fm is constructed to study the dependence on the 8 Be width γ, which vary within the interval from 5.1 eV to 8.53 eV (this interval corresponds to earlier experimental measurements of γ = 6.8 ± 1.7 eV). A set of potentials 1-11 with parameters μ r -1 = 1.53 fm and μ a -1 = 2.85 fm is constructed to study the dependence on the 8 Be width γ, which vary within the interval from 5.1 eV to 8.53 eV (this interval corresponds to earlier experimental measurements of γ = 6.8 ± 1.7 eV). The potential 12 with parameters μ r = 0.7 fm -1 and μ a = fm -1 is used to illustrate the dependence on the potential range. The potential 12 with parameters μ r = 0.7 fm -1 and μ a = fm -1 is used to illustrate the dependence on the potential range. The potentials 13-15, that fit the two-body experimental data The potentials 13-15, that fit the two-body experimental data E 2 =92.04 keV, γ = 5.47 ± 0.25 eV E 2 =92.04 keV, γ = 5.47 ± 0.25 eV Fit the experimental phase shift up to the energy 12 MeV Fit the experimental phase shift up to the energy 12 MeV

5.2 Parameters of the two-body potentials Parameters of the two-bodyeffective potentials providing the - resonance position and width Parameters of the two-body effective potentials providing the - resonance position and width γ = 6.8 ± 1.7 eV (potentials 1-12) γ = 5.47 ± 0.25 eV (potentials 13-15). Parameters of the two-bodyeffective potentials providing the - resonance position and width Parameters of the two-body effective potentials providing the - resonance position and width γ = 6.8 ± 1.7 eV (potentials 1-12) γ = 5.47 ± 0.25 eV (potentials 13-15).

5.3 Two-body phase shift The experimental and calculated α-α s-wave elastic-scattering phase shift δ versus the center-of mass energy E (MeV) for the two-body potentials 1, 2, 6, 9, 10, and 11 (top to bottom, left panel) and for the two-body potentials 2, 13, 14, and 15 providing the 8 Be width within the range of the experimental uncertainty 5.57 eV < γ < 5.82 eV (right panel)

5.4 Results of the solution HRE (a) The one-term three-body effective potential (V 1 =0) Fixed at the experimental values Fixed at the experimental values E gs = MeV E r = MeV Not fixed at the experimental values Not fixed at the experimental values R (1) = 2.48 ± 0.22 fm Г = 8.5 ± 1.0 eV M 12 = 5.48 ± 0.22 fm 2 Fixed at the experimental values Fixed at the experimental values E gs = MeV E r = MeV Not fixed at the experimental values Not fixed at the experimental values R (1) = 2.48 ± 0.22 fm Г = 8.5 ± 1.0 eV M 12 = 5.48 ± 0.22 fm 2

(b) The three-body effective potential (V 10) Relation between the parameters of the three-body effective potentials for the two-body potentials 13, 14 and 15 plotted by solid, dashed, dotted lines, respectively. The calculated M 12 -Г and R (2) -Г dependences for the two-body potentials 6, 7, 9, 13, 14, and 15. The point with errorbars shows the experimental data Г = 8.5 ± 1.0 eV M 12 = 5.48 ± 0.22 fm 2 Fixed at the experimental values Fixed at the experimental values E gs = MeV E r = MeV R (1) = 2.48 ± 0.22 fm Not fixed at the experimental values Г = 8.5 ± 1.0 eV M 12 = 5.48 ± 0.22 fm 2 Fixed at the experimental values Fixed at the experimental values E gs = MeV E r = MeV R (1) = 2.48 ± 0.22 fm Not fixed at the experimental values Г = 8.5 ± 1.0 eV M 12 = 5.48 ± 0.22 fm 2

Conclusion Confirmed that at low energies state decays by means of the sequential mechanism of decay 12 C + 8 Be 3 Confirmed that at low energies state decays by means of the sequential mechanism of decay 12 C + 8 Be 3 Determined the fine characteristics of the 0 + states 12 C nuclei (an extremely narrow width Г, the rms radius R (2) of the state and monopole transition matrix element M 12 ) for a set of the two- and three-body effective potentials Determined the fine characteristics of the 0 + states 12 C nuclei (an extremely narrow width Г, the rms radius R (2) of the state and monopole transition matrix element M 12 ) for a set of the two- and three-body effective potentials Adjusted the parameters of the two-body effective Ali-Bodmer-type potentials to fix the position and width of 8 Be at the experimental values and to fit the s-wave phase shift (the fit of d-wave and p-wave phase shifts still need to be added) Adjusted the parameters of the two-body effective Ali-Bodmer-type potentials to fix the position and width of 8 Be at the experimental values and to fit the s-wave phase shift (the fit of d-wave and p-wave phase shifts still need to be added) Adjusted the parameters of the three-body effective potentials to fix the energies of the 0 + states 12 C nuclei (E gs, E r ), and rms radii of the state (R (1) ) at the experimental values Adjusted the parameters of the three-body effective potentials to fix the energies of the 0 + states 12 C nuclei (E gs, E r ), and rms radii of the state (R (1) ) at the experimental values Study the dependence of the characteristics of 12 C on the effective two- and three- body potentials Study the dependence of the characteristics of 12 C on the effective two- and three- body potentials The calculation of characteristics of the state is still needed The calculation of characteristics of the state is still needed Some results discussed in presentation have been published in Some results discussed in presentation have been published in Phys. Rev. C 70, (2004) Phys. Rev. C 70, (2004) Eur. Phys. J. A 26, (2005) Eur. Phys. J. A 26, (2005) and reported at and reported at UNISA-JINR Symposium ``Models and Methods in Few- and Many-Body Systems'' (6--9 February 2007, Skukuza, Kruger National Park, South Africa). UNISA-JINR Symposium ``Models and Methods in Few- and Many-Body Systems'' (6--9 February 2007, Skukuza, Kruger National Park, South Africa). 12 C system is intensively investigating by other groups 12 C system is intensively investigating by other groups D. V. Fedorov at al. Phys. Lett. B, 389, 631, (1996) N. N. Filikhin. Yad. Fiz., 63, 1612, (2000) N. N. Filikhin at al. J. Phys. G, 31, 1207, (2005) C. Kurokawa at al. Phys. Rev. C 71, , (2005) Y.Funaki at al. Eur. Phys. J. A 24, 368, (2005) K.Arai Phys. Rev. C 74, , (2006) Y. Suzuki at al. Nucl-th/ R. Alvarez-Rodriguez at al. Nucl-th/ D. V. Fedorov at al. Phys. Lett. B, 389, 631, (1996) N. N. Filikhin. Yad. Fiz., 63, 1612, (2000) N. N. Filikhin at al. J. Phys. G, 31, 1207, (2005) C. Kurokawa at al. Phys. Rev. C 71, , (2005) Y.Funaki at al. Eur. Phys. J. A 24, 368, (2005) K.Arai Phys. Rev. C 74, , (2006) Y. Suzuki at al. Nucl-th/ R. Alvarez-Rodriguez at al. Nucl-th/

Thank you for attention