Computational Modeling of Structurally Conserved Cancer Mutations in the RET and MET Kinases: The Impact on Protein Structure, Dynamics, and Stability 

Slides:



Advertisements
Similar presentations
Inhibitor Binding Increases the Mechanical Stability of Staphylococcal Nuclease Chien-Chung Wang, Tian-Yow Tsong, Yau-Heiu Hsu, Piotr E. Marszalek Biophysical.
Advertisements

Volume 92, Issue 12, Pages (June 2007)
Molecular Analysis of the Interaction between Staphylococcal Virulence Factor Sbi-IV and Complement C3d  Ronald D. Gorham, Wilson Rodriguez, Dimitrios.
Volume 88, Issue 2, Pages (February 2005)
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Volume 109, Issue 6, Pages (September 2015)
Volume 109, Issue 7, Pages (October 2015)
A Dynamics Criterion to Determine Allostery
Volume 108, Issue 5, Pages (March 2015)
Molecular Biophysics of Orai Store-Operated Ca2+ Channels
Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
Alexander Vasin, Dina Volfson, J. Troy Littleton, Maria Bykhovskaia 
Volume 102, Issue 8, Pages (April 2012)
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Christopher Wostenberg, W.G. Noid, Scott A. Showalter 
Molecular Dynamics Simulations on SDF-1α: Binding with CXCR4 Receptor
Volume 86, Issue 6, Pages (June 2004)
Supriyo Bhattacharya, Nagarajan Vaidehi  Biophysical Journal 
Volume 89, Issue 2, Pages (August 2005)
Structural and Dynamic Properties of the Human Prion Protein
Volume 103, Issue 12, Pages (December 2012)
Volume 102, Issue 6, Pages (March 2012)
Large-Scale Conformational Dynamics of the HIV-1 Integrase Core Domain and Its Catalytic Loop Mutants  Matthew C. Lee, Jinxia Deng, James M. Briggs, Yong.
Emel Ficici, Daun Jeong, Ioan Andricioaei  Biophysical Journal 
Monika Sharma, Alexander V. Predeus, Nicholas Kovacs, Michael Feig 
Volume 108, Issue 1, Pages (January 2015)
Brittny C. Davis, Jodian A. Brown, Ian F. Thorpe  Biophysical Journal 
Binding of the Bacteriophage P22 N-Peptide to the boxB RNA Motif Studied by Molecular Dynamics Simulations  Ranjit P. Bahadur, Srinivasaraghavan Kannan,
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
Conformational Recognition of an Intrinsically Disordered Protein
“DFG-Flip” in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop  Harish Vashisth, Luca Maragliano, Cameron F.
Thermodynamic Description of Polymorphism in Q- and N-Rich Peptide Aggregates Revealed by Atomistic Simulation  Joshua T. Berryman, Sheena E. Radford,
Volume 96, Issue 7, Pages (April 2009)
Ligand Binding to the Voltage-Gated Kv1
Volume 114, Issue 5, Pages (March 2018)
Till Siebenmorgen, Martin Zacharias  Biophysical Journal 
Volume 112, Issue 8, Pages (April 2017)
Volume 110, Issue 8, Pages (April 2016)
Hisashi Ishida, Hidetoshi Kono  Biophysical Journal 
Dissecting DNA-Histone Interactions in the Nucleosome by Molecular Dynamics Simulations of DNA Unwrapping  Ramona Ettig, Nick Kepper, Rene Stehr, Gero.
Insights into Oncogenic Mutations of Plexin-B1 Based on the Solution Structure of the Rho GTPase Binding Domain  Yufeng Tong, Prasanta K. Hota, Mehdi.
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Pek Ieong, Rommie E. Amaro, Wilfred W. Li  Biophysical Journal 
Volume 103, Issue 5, Pages (September 2012)
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Rita Pancsa, Daniele Raimondi, Elisa Cilia, Wim F. Vranken 
Molecular Dynamics Simulations of Lignin Peroxidase in Solution
Volume 98, Issue 12, Pages (June 2010)
Dynamics of the BH3-Only Protein Binding Interface of Bcl-xL
Min Wang, Mary Prorok, Francis J. Castellino  Biophysical Journal 
Logan S. Ahlstrom, Osamu Miyashita  Biophysical Journal 
Volume 103, Issue 10, Pages (November 2012)
Toshiki Yamada, Kevin Strange  Biophysical Journal 
Volume 107, Issue 7, Pages (October 2014)
M. A. Miteva, J. M. Brugge, J. Rosing, G. A. F. Nicolaes, B. O
Volume 99, Issue 3, Pages (August 2010)
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Volume 98, Issue 1, Pages (January 2010)
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Chris Neale, Henry D. Herce, Régis Pomès, Angel E. García 
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Volume 98, Issue 10, Pages (May 2010)
Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, III: Molecular Dynamics Simulation Incorporating a.
Volume 84, Issue 4, Pages (April 2003)
Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes  Yu-ming M. Huang, Wei Chen, Michael J.
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Volume 114, Issue 2, Pages (January 2018)
Wenzhe Ma, Chao Tang, Luhua Lai  Biophysical Journal 
Zeinab Jahed, Hengameh Shams, Mohammad R.K. Mofrad  Biophysical Journal 
Volume 98, Issue 4, Pages (February 2010)
Presentation transcript:

Computational Modeling of Structurally Conserved Cancer Mutations in the RET and MET Kinases: The Impact on Protein Structure, Dynamics, and Stability  Anshuman Dixit, Ali Torkamani, Nicholas J. Schork, Gennady Verkhivker  Biophysical Journal  Volume 96, Issue 3, Pages 858-874 (February 2009) DOI: 10.1016/j.bpj.2008.10.041 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 (A) The crystal structure of the wild-type RET kinase in the active form (PDB entry 2IVS). (B) A closeup of structural environment near M918T mutation in the RET kinase. (C) The crystal structure of the wild-type MET kinase in the inactive, autoinhibited form (PDB entry 2G15). (D) A closeup of structural environment near M1250T mutation in the MET kinase. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 The RMSD values for Cα atoms from 20-ns simulations with the inactive RET kinase (A) and the active RET kinase. (C) The RMSF values of the RET kinase residues (using original numbering in the PDB entries 1XPD and 2IVS) from 20-ns MD simulations with the inactive RET kinase (B) and the active RET kinase (D). For all panels, time evolution of the WT RET is shown in blue; time evolution of the M918T RET mutant is shown in red. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 Analysis of MD simulations with the inactive RET kinase. Time evolution history of the distances between Ca atoms of the residues in the local structural environment of the mutational site. Time evolution of the distances between Ca atoms of the M918T RET and V915 RET (A), M918T RET and S922 RET (B), M918T RET and L923 RET (C), and M918T RET and Y928 RET (D). Time evolution of the distances for the M918 WT RET is shown in blue; time evolution of the distances for the T918 RET mutant is shown in red. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 (A) The average structure of the inactive form of the WT RET kinase with M918 residue shown in CPK model. (B) A closeup of structural packing near the mutational site in the inactive WT RET kinase. (C) The average structure of the inactive form of the M918T RET kinase mutant with T918 residue shown in CPK model. (D) A closeup of structural packing near the mutational site in the inactive T918 RET kinase. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 5 (A) The average structure of the ACTIVE form of WT RET kinase with M918 residue shown in CPK model. (B) A closeup of structural packing near the mutational site in the ACTIVE WT RET kinase. (C) The average structure of the ACTIVE form of M918T RET kinase mutant with T918 residue shown in CPK model. (D) A closeup of structural packing near the mutational site in the ACTIVE T918 RET kinase. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 6 (A) The RMSD values for Cα atoms from 20-ns MD simulations with the inactive MET kinase. Time evolution of the WT is shown in blue; time evolution of the M1250T mutant is shown in red. (B) The RMSF values of the RET kinase residues (using original numbering in the PDB entry 2G15) from 20-ns MD simulations with the inactive MET kinase. Time evolution of the WT is shown in blue; time evolution of the M1250T mutant is shown in red. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 7 Analysis of MD simulations with the inactive MET kinase. Time evolution of the distances between Ca atoms of the residues in the local structural environment of the mutational site. Time evolution of the distances between Ca atoms of the M1250T MET and L1245 MET (A), M1250T MET and V1257 MET (B), M1250T MET and S1254 MET (C), and M1250T MET and F1260 MET (D). Time evolution of the distances for the M1250 WT MET is shown in blue; time evolution of the distances for the T1250 MET mutant is shown in red. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 8 (A) The average structure of the inactive form of WT MET kinase with M1250 residue shown in CPK model. (B) A closeup of structural packing near the mutational site in the inactive WT MET kinase. (C) The average structure of the inactive form of M1250T MET kinase mutant with T1250 residue shown in CPK model. (D) A closeup of structural packing near the mutational site in the inactive T1250 MET kinase. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 9 The predicted binding mode of the ZD6474 inhibitor (in blue CPK model) with the WT RET Binding site residues are shown in CPK models. (A) Superposition of the predicted binding mode (in blue stick) with the crystallographic conformation of the ZD6474 inhibitor from the WT complex(default colors, stick model) in the WT RET (B); V804G RET mutant (C); and V804M RET mutant (D). Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 10 The correlation between the computed and experimental binding free energies of the ZD6474 inhibitor with WT RET, M918T, V804G, and V804M RET mutants. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 11 Structural mapping of cancer mutations and modeling protein stability effects in the RET kinase. Protein stability differences between the WT RET and RET mutants using CUPSAT (A), FOLDx (B), and MM-GBSA (C). Mapping of cancer mutations into the structure of the RET kinase (D). Negative values of protein stability changes correspond to destabilizing mutations. Mutational sites are in green CPK Ca models. Mutations with the largest destabilization effect are shown in red. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 12 Structural mapping of cancer mutations and modeling protein stability effects in the MET kinase. Protein stability differences between the WT RET and RET mutants using CUPSAT (A), FOLDx (B), and MM-GBSA (C). Mapping of cancer mutations into the structure of the RET kinase (D). Negative values of protein stability changes correspond to destabilizing mutations. Mutational sites are in green CPK Ca models. Mutations with the largest destabilization effect are shown in red. Biophysical Journal 2009 96, 858-874DOI: (10.1016/j.bpj.2008.10.041) Copyright © 2009 Biophysical Society Terms and Conditions