(TH/8-1, Jae-Min Kwon et al

Slides:



Advertisements
Similar presentations
P.W. Terry K.W. Smith University of Wisconsin-Madison Outline
Advertisements

Glenn Bateman Lehigh University Physics Department
XGC gyrokinetic particle simulation of edge plasma
1 Edge Electrode Biasing Experiments on NSTX S. Zweben, C. Bush, R. Maqueda, L. Roquemore, R. Marasla M. Bell, J. Boedo, R. Kaita, Y. Ratises, B. Stratton.
Momentum transport and flow shear suppression of turbulence in tokamaks Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes.
#0 F. Castejón 1), M. Ochando 1), T. Estrada 1), M.A. Pedrosa 1), D. López-Bruna 1), E. Ascasíbar 1), A. Cappa 1), A.A. Chmyga 2), N.B Dreval 2), S. Eguilior.
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS V. Vershkov, L.G. Eliseev, S.A. Grashin. A.V. Melnikov, D.A.
1 / 12 Association EURATOM-CEA IAEA 20th Fusion Energy Conference presented by Ph. Ghendrih S. Benkadda, P. Beyer M. Bécoulet, G. Falchetto,
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
RFX-mod Workshop – Padova, January Experimental QSH confinement and transport Fulvio Auriemma on behalf of RFX-mod team Consorzio RFX, Euratom-ENEA.
Fluid vs Kinetic Models in Fusion Laboratory Plasmas ie Tokamaks Howard Wilson Department of Physics, University of York, Heslington, York.
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
Correlation between Electron Transport and Shear Alfvén Activity in NSTX D. Stutman, N. Gorelenkov, L. Delgado, S. Kaye, E. Mazzucatto, K. Tritz and the.
Calculations of Gyrokinetic Microturbulence and Transport for NSTX and C-MOD H-modes Martha Redi Princeton Plasma Physics Laboratory Transport Task Force.
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
ASIPP 研究生:章文扬 导师:高翔,李亚东 磁剪切对微观湍流作用机制的实验研究 December 8, 2009 Hefei, China.
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
The efficient sustainment of a stable, high-β spheromak: modeling By Tom Jarboe, To PSI-Center July 29, 2015.
Research activity on the T-10 tokamak G. Kirnev on behalf of T-10 team Nuclear Fusion Institute, RRC “Kurchatov Institute”, Moscow , Russia.
1 托卡马克位形优化 (2) 高庆弟 SWIP 核工业西南物理研究院 成都. 2 Nonlinearity of LH wave absorption  The plasma temperature in HL-2A is much lower than that in future reactor.
Large-Amplitude Electric Fields Associated with Bursty Bulk Flow Braking in the Earth’s Plasma Sheet R. E. Ergun et al., JGR (2014) Speaker: Zhao Duo.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.
Plasma-wall interactions during high density operation in LHD
1Peter de Vries – ITBs and Rotational Shear – 18 February 2010 – Oxford Plasma Theory Group P.C. de Vries JET-EFDA Culham Science Centre Abingdon OX14.
Transport in three-dimensional magnetic field: examples from JT-60U and LHD Katsumi Ida and LHD experiment group and JT-60 group 14th IEA-RFP Workshop.
Hysteresis in the L-H-L transition, D C McDonald, ITPA, Princeton 20091/22 Hysterics in the L-H transition D C McDonald.
Chalmers University of Technology Simulations of the formation of transport barriers including the generation of poloidal spinup due to turbulence J. Weiland.
Institut für Plasmaforschung Universität Stuttgart Plasma Turbulence at the Transition from Closed to Open Fieldlines Mirko Ramisch
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority ITB formation and evolution with co- and counter NBI A. R. Field, R. J. Akers,
Modelling the Neoclassical Tearing Mode
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
SMK – APS ‘06 1 NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into.
53rd Annual Meeting of the Division of Plasma Physics, November , 2010, Salt Lake City, Utah 5-pin Langmuir probe configured to measure the Reynolds.
1 Recent Progress on QPS D. A. Spong, D.J. Strickler, J. F. Lyon, M. J. Cole, B. E. Nelson, A. S. Ware, D. E. Williamson Improved coil design (see recent.
Energetic Particles Interaction with the Non-resonant Internal Kink in Spherical Tokamaks Feng Wang*, G.Y. Fu**, J.A. Breslau**, E.D. Fredrickson**, J.Y.
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
二维电磁模型 基本方程与无量纲化 基本方程. 无量纲化 方程化为 二维时的方程 时间上利用蛙跳格式 网格划分.
56th Annual Meeting of the Division of Plasma Physics, October 27 – October 31, 2014, New Orleans, LA Increase ion temperature with neutral beams: Study.
57th Annual Meeting of the Division of Plasma Physics, November , Savannah, Georgia Equilibrium Reconstruction Theory and Modeling Optimized.
G.Y. Park 1, S.S. Kim 1, T. Rhee 1, H.G. Jhang 1, P.H. Diamond 1,2, I. Cziegler 2, G. Tynan 2, and X.Q. Xu 3 1 National Fusion Research Institute, Korea.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
Kinetic Effects on Slowly Rotating Magnetic Islands in Tokamaks
Neoclassical Predictions of ‘Electron Root’ Plasmas at HSX
An overview of turbulent transport in tokamaks
Features of Divertor Plasmas in W7-AS
Overview of Indian activities in P&EP
Center for Plasma Edge Simulation
Studies of Bias Induced Plasma Flows in HSX
Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard,
Targeted Physics Optimization in HSX
Influence of energetic ions on neoclassical tearing modes
Development and Analysis of Gas Puff CXRS in SOL
T. Morisaki1,3 and the LHD Experiment Group
K. Ida1,2, R. Sakamoto1,2, M. Yoshinuma1,2, K. Yamasaki3, T
(EX/P1-4) Type I ELMy H-mode in hydrogen and deuterium:
(TH/8-1, Jae-Min Kwon et al
Stabilization of m/n=1/1 fishbone by ECRH
A gyrokinetic discovery of fast L-H bifurcation physics in a realistic, diverted, tokamak edge geometry S. Ku et al. TH/2-1 A fast edge turbulence.
XGC simulation of CMOD edge plasmas
[EX / P7-8] 27th IAEA Fusion Energy Conference – J. Jang, et. al
MAST Research Making Key Contributions to Tokamak Physics
New Results for Plasma and Coil Configuration Studies
Modelling the Neoclassical Tearing Mode
T. Morisaki1,3 and the LHD Experiment Group
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
Coupling between intrinsic rotation and turbulence-driven residual stress in the TEXTOR tokamak (Y. Xu et al, EX/P8-18) In low discharges (open.
Presentation transcript:

(TH/8-1, Jae-Min Kwon et al (TH/8-1, Jae-Min Kwon et al.) Gyrokinetic XGC1 Study of Magnetic Island Effect on Neoclassical and Turbulence Physics in a KSTAR Plasma Full-f gyrokinetic study has been performed, for the first time, to study neoclassical and turbulence physics in a given (2,1) 3D magnetic island structure Mean potential, plasma profile and flow evolve to 3D structure Turbulence penetrates through the X-point, followed by propagation to O-area (a) Turbulence evolution near X-point of magnetic island. Black dashed line represents magnetic island separatrix. Kinetic ion orbits and turbulence make the density inside the island non-flat across the O-point radius The island effect on bootstrap current flattening is not as dramatic as previously assumed Discontinuity in the magnetic topology makes a double δϕ layer across the magnetic islands [figure (b)] Strongly sheared ExB layer formed across the magnetic island Weakening of ambient ITG-TEM turbulence Consistent with experimental observation in KSTAR1 Conclusion: Existence of magnetic island does not have to flatten the local boostrap current or degrade the plasma confinement, as seen in KSTAR experiment1 (b) Perturbed mean potential 1 M.J. Choi et al, Nucl. Fusion Lett. 57, 126058 (2017); Jae-Min Kwon et al, Phys. Plasmas 25, 052506 (2018)