Metrological characterisation of single-photon avalanche diodes

Slides:



Advertisements
Similar presentations
Chapter 9. PN-junction diodes: Applications
Advertisements

A photon-counting detector for exoplanet missions Don Figer 1, Joong Lee 1, Brandon Hanold 1, Brian Aull 2, Jim Gregory 2, Dan Schuette 2 1 Center for.
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
An Optical Receiver for Interplanetary Communications Jeremy Bailey.
Economic Stimulus : Valorization of Single Photon Detectors and Quantum Key Distribution Systems Hugo Zbinden Group of Applied Physics (GAP), UNIGE NCCR.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
Pump Probe Measurements of Femto-second Pulses By David Baxter.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Single Photon Source for Quantum Communication Sarah Walters, Meng-Chun Hsu, Hubert Zal, Pierce Morgan.
Near-infrared (NIR) Single Photon Counting Detectors (SPADs)
Fiber Optic Receiver A fiber optic receiver is an electro-optic device that accepts optical signals from an optical fiber and converts them into electrical.
OPTICAL DETECTORS IN FIBER OPTIC RECEIVERS.
Chapter 7 Photonic Transmission Systems (Digital & Analog)
Overview of Scientific Imaging using CCD Arrays Jaal Ghandhi Mechanical Engineering Univ. of Wisconsin-Madison.
I. Prochazka 1, J. Kodet 1,2, J. Blazej 1 K.G. Kirchner 3, F. Koidl 3 Presented at Workshop on Laser solutions for Orbital Space Debris April 2015,Laboratoire.
Measurement of the absolute efficiency,
Chapter 6 Photodetectors.
Two vertical-cavity surface-emitting lasers (VCSEL’s) are used at Alice, as sources of the two encoded states. Both outputs are then attenuated to achieve.
RAD2012, Nis, Serbia Positron Detector for radiochemistry on chip applications R. Duane, N. Vasović, P. LeCoz, N. Pavlov 1, C. Jackson 1,
Photon detection Visible or near-visible wavelengths
3/26/2003BAE of 10 Application of photodiodes A brief overview.
Chapter 5 Optical Detector.
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze: Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS Detection.
Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.
H.-G. Moser Max-Planck-Institut for Physics, Munich CALOR 06 Chicago June 5-9, 2006 Silicon Photomultiplier, a new device for low light level photon detection.
B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar Measurements to Space Using Wind Profile Measurements from GLOW.
Experimental set-up Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE Multi-Channel MCP PMTs S.Korpar a,b, R.Dolenec.
SiPM: Development and Applications
DDEP 2012 | C. Bisch – Study of beta shape spectra 1 Study of the shape of  spectra Development of a Si spectrometer for measurement of  spectra 
Femto-second Measurements of Semiconductor Laser Diodes David Baxter
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS.
Two-Focus Fluorescence Correlation  Spectroscopy: A New Tool for Accurate and Absolute Diffusion Measurements Jörg Enderlein et al., ChemPhysChem, 8, 433–443.
Photo Detectors for Fiber Optic Communication
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
Simonetta Gentile, LCWS10, March 2010, Beijing,China. G-APD Photon detection efficiency Simonetta Gentile 1 F.Meddi 1 E.Kuznetsova 2 [1]Università.
Jan 2004 Chuck DiMarzio, Northeastern University b-1 ECEG287 Optical Detection Course Notes Part 3: Noise and Photon Detection Profs. Charles A.
Catania 11 ICATPP october, 2009 Como 1/12 Catania Comparative measurements of the performances of four super bialkali large.
Optical Receivers Theory and Operation
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Photodetection EDIT Absolute Measurement of the Quantum Efficiency of a Classical PMT Task: measure the QE of a PMT in the wavelength interval 200 to 800.
The VSiPMT: A new Generation of Photons Detectors G. Barbarino 1,2, F. C. T. Barbato 1,2, R. de Asmundis 2, G. De Rosa 1,2, F. Di Capua 1, P. Migliozzi.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
Topic Report Photodetector and CCD
Metrology and integrated optics Geoff Pryde Griffith University.
DECam Spectrophotometric Calibration DECam calibration workshop, TAMU April 20 th, 2009 Jean-Philippe Rheault, Texas A&M University.
Development of Multi-Pixel Photon Counters (1)
OptiSystem applications: Photodiode sensitivity modelling
Optical Emitters and Receivers
Electronics & Communication Engineering
Progress report on SiPM development and its applications
PN-junction diodes: Applications
by: Mrs. Aboli N. Moharil Assistant Professor, EXTC dept.
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Subject Name: Optical Fiber Communication Subject Code: 10EC72
Photodetectors.
Photon Statistics Light beam  stream of photons
A.S. Ghalumyan, V.T. Nikoghosyan Yerevan Physics Institute, Armenia
Instrumentation for Colliding Beam Physics 2017
Detective Quantum Efficiency Preliminary Design Review
GAJENDRA KUMAR EC 3rd YR. ROLL NO
High Power, Uncooled InGaAs Photodiodes with High Quantum Efficiency for 1.2 to 2.2 Micron Wavelength Coherent Lidars Shubhashish Datta and Abhay Joshi.
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Complex Nanophotonics
SPECTROPHOTOMETRY Applied Chemistry.
Optical Receivers 1. Photo Detectors
md-NUV PET project meeting
Shanghai Institute of Technical Physics , Chinese Academy of Science
Norm Moulton LPS 15 October, 1999
PERFORMANCE OF THE METAL RADIATION MONITORING SYSTEMS
Presentation transcript:

Metrological characterisation of single-photon avalanche diodes Marco López Robin Eßling Beatrice Rodiek Helmuth Hofer Stefan Kück Working group 4.54: Laser radiometry and quantum radiometry

Motivation Single-Photon Avalanche Diodes (Si or InGaAs SPADs) important for scientific research: experimental quantum optics quantum cryptography quantum computing medicine biology astrophysics  Wherever low photon fluxes need to be measured! 16.06.2018 Marco López

Motivation- Light Classical light: Super-Poissonian-Distribution  bunching (thermal light) Laser light: Poissonian Distribution Non-classical light: Sub-Poissonian-Distribution  anti bunching semiconductor quantum dot, single atoms / molecules / ions, single organic molecules, single defect centres in crystals 01.08.2017 SPW 2017

Motivation – Analog detector vs. Digital detector Analogue detector Digital detector Si hn I1 I2 I1 < I2 SPAD hn „Click“ Signal  Number of photons Only one “click” per time 16.06.2018 Marco López

Detector types Si-SPAD InGaAs-SPAD TES SNSPD Detection efficiency 80 % 20 % > 90 % > 85 % Dark counts 5 cps > 1 kHz < 50 Hz - < 10 cps Jitter  40 ps  250 ps  100 ps  100 ns < 25 ps Deadtime  50 ns > 1 µs > µs < 10 ns Max. count rate  20 MHz  1 MHz < 1 MHz > 50 MHz Photon number resolution no yes (no) After-pulsing  0.5 %  5 % Spectral range (350 – 1000) nm (900 – 1700) nm  – mm (< 0.5 – > 2.5) µm Operation temperature RT LT 16.06.2018 Marco López

Detector types Si-SPAD InGaAs-SPAD TES SNSPD Detection efficiency 80 % 20 % > 90 % > 85 % Dark counts 5 cps > 1 kHz < 50 Hz - < 10 cps Jitter  40 ps  250 ps  100 ps  100 ns < 25 ps Deadtime  50 ns > 1 µs > µs < 10 ns Max. count rate  20 MHz  1 MHz < 1 MHz > 50 MHz Photon number resolution no yes (no) After-pulsing  0.5 %  5 % Spectral range (350 – 1000) nm (900 – 1700) nm  – mm (< 0.5 – > 2.5) µm Operation temperature RT LT Si-SPAD InGaAs-SPAD Detection efficiency 80 % 20 % 16.06.2018 Marco López

Detection efficiency,  Photon detection probability (Detection efficiency, ): probability that a photon incident at the optical input will be detected within a detection gate. 𝜂=− ln⁡( 𝑃 𝑖 − 𝑃 𝑑 ) <𝑛> Average optical power [W] Pi : Photon detection probability at each illuminated gate Pd : Dark count probability <n>: Average photon number per emitted pulse (mean photon number) <𝑛>= 𝑃 ℎ𝑐 𝜆 ∙𝑓 16.06.2018 Marco López

Measurement methods Photon correlation technique (Reference detector not needed) 𝑁 DUT = 𝜂 DUT 𝑁 𝑁 Coincidence = 𝜂 DUT 𝜂 Trigger 𝑁 𝜂 DUT = 𝑁 DUT 𝑁 Trig 𝑁 Trigger = 𝜂 Trigger 𝑁 Substitution method (Reference detector needed) Calibrated detector 𝜂= 𝐶𝑜𝑢𝑛𝑡𝑠−𝐷𝐶𝑅 <𝑛> SPAD 16.06.2018 Marco López

SPAD calibration using double attenuator technique – Step 1 Laser 770 nm Monitor detector Filter 2 T = 4.6  10-4 Filter 3 T = 1.6  10-4 Si-Diode Si-SPAD Microscope objective Beam splitter Variable Filter OD = 0.2 … 4 M. López, et. al, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique, Journal of Modern Optics 62, S21 – S27 (2015) 16.0.2018 Marco López

SPAD calibration using double attenuator technique – Step 2 Laser 770 nm Monitor detector Filter 2 T = 4.6  10-4 Filter 3 T = 1.6  10-4 Si-Diode Si-SPAD Microscope objective Beam splitter Variable Filter OD = 0.2 … 4 M. López, et. al, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique, Journal of Modern Optics 62, S21 – S27 (2015) 16.0.2018 Marco López

SPAD calibration using double attenuator technique – Step 3 Laser 770 nm Monitor detector Filter 2 T = 4.6  10-4 Filter 3 T = 1.6  10-4 Si-Diode Si-SPAD Microscope objective Beam splitter Variable Filter OD = 0.2 … 4 M. López, et. al, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique, Journal of Modern Optics 62, S21 – S27 (2015) 16.0.2018 Marco López

SPAD calibration using double attenuator technique – Step 4 Laser 770 nm Monitor detector Filter 2 T = 4.6  10-4 Filter 3 T = 1.6  10-4 Si-Diode Si-SPAD Microscope objective Beam splitter Variable Filter OD = 0.2 … 4 M. López, et. al, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique, Journal of Modern Optics 62, S21 – S27 (2015) 16.0.2018 Marco López

SPAD calibration using double attenuator technique – Step 5 Laser 770 nm Monitor detector Filter 2 T = 4.6  10-4 Filter 3 T = 1.6  10-4 Si-Diode Si-SPAD Microscope objective Beam splitter Variable Filter OD = 0.2 … 4 M. López, et. al, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique, Journal of Modern Optics 62, S21 – S27 (2015) 16.08.2018 Marco López

Si-SPAD calibration using double attenuator technique Si-Diode F3 F2 Variable Filter Monitor Laser Beam splitter Laser 770 nm Monitor detector Filter 2 T = 4.6  10-4 Filter 3 T = 1.6  10-4 Si-Diode Si-SPAD Microscope objective Beam splitter Variable Filter OD = 0.2 … 4 M. López, et. al, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique, Journal of Modern Optics 62, S21 – S27 (2015) 16.08.2018 Marco López

Measurement uncertainty budget – main components SPAD = 0.6359  0.0040 (k = 2) SPAD = 0.6359  0.63 % (k = 2) Spectral responsivity of Si-diode:  40 % Caused by linearity measurements and its uncertainty Filter transmission:  45 % Total filter transmission equals multiplication of two single filter transmissions? 16.08.2018 Marco López

Measurement setup – Improvements Standard detector: Integrating sphere with Si-diode instead of Si-diode only (avoiding back-reflexion into the setup) Automated alignment procedure: Better reproducibility in position 16.08.2018 Marco López

Detection efficiency – Results and Uncertainty Uncertainty component Uncertainty (%) Planck constant, h 2.52 x 10-7 Speed of light, c 0.0 Wavelength, λ 0.0075 Amplification factor, A1 0.0021 Amplification factor, A2 2.08 x 10-6 Amplification factor, A3 Ratio V1/VMon1, Q1 0.004 Ratio V2/VMon2, Q2 0.015 Ratio V3/VMon3, Q3 0.05 Ratio CR/VMonSPAD, Q4 0.036 Spectral responsivity, sSi 0.15 Factor for the use of two filters, Ffilt 0.005 Combined uncertainty, uc 0.162 Main contribution: Standard detector u(ηSPAD)  0.16 % (770 nm, 100 000 cps) However, this is the ideal value. What will be achieved in day-to-day calibrations? 1 % seems reasonable!? Pilot study under way!!! 16.06.2018 Marco López

Relative spatial detection efficiency of the Si-SPAD detectors (In)Homogeneity Relative spatial detection efficiency of the Si-SPAD detectors Laser beam diameter B approx. 10 µm. Relative values are within ± 1 % for the main active region of the detectors, at the border of the active regions the values drop. Homegeneities Region 1: ≤ 0.85 % ( = 120 µm) Region 1: ≤ 2.2 % ( = 40 µm) Region 2: ≤ 0.3 % ( = 40 µm) Region 2: ≤ 0.13 % ( = 20 µm) 01.08.2017 SPW 2017

Detection efficiency – influence of photon statistics M. López, et. al, “Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique, Journal of Modern Optics 62, S21 – S27 (2015) 16.06.2018 Marco López

InGaAs calibration Reference detector: Low-noise InGaAs photodiode (Hamamatsu G8605-23), cooled at -20 °C, and a Femto/Pico-ammeter (Keysight B2981A) Dark current: Id ~ 4 pA Linearity: < 0.25 % for Iph = 10 µA – 10 pA 16.06.2018 Marco López

InGaAs calibration 16.08.2018 Marco López

Standard uncertainty (%) InGaAs calibration Source of uncertainty Standard uncertainty (%) Planck´s constant, h 9.055×10-6 Wavelength,  0.004 Speed of light, c 0.000 Spectral Responsivity of InGaAs-diode, SInGaAs 0.300 InGaAs/InP SPAD counts, Pcount 0.720 InGaAs/InP SPAD dark counts, Pdark 0.305 InGaAs/InP SPAD after pulsing, FPafter 0.173 Photocurrent InGaAs diode, Iph 0.028 Attenuation factor, FAtt 0.050 Linearity factor InGaAs photodiode, FLin Combined uncertainty, uc 0.857 16.06.2018 Marco López

Traceability chart for cal. SPADs Beam path: 1 – 2 – 3 – 2 – 1  = 0.999879  = 0.99958 Sensitivity = 1.24 K/mW at 4.2 K  radiation nearly totally absorbed Electrical Substitution Radiometer (ESR) operated at cryogenic low temperatures (4-7 K). Optical power is traced back to electrical power (electric current I and electric potential difference V). 16.06.2018 Marco López

(First) European pilot comparison: DE (free-running InGaAs-SPAD) Device Under Test (DUT): Free-running InGaAs SPAD (ID Quantique, ID 220) : 1550 nm Trigger Freq.: 110 kHz U()= 2 % - 6 % (En  0.6) SPIE Photonics, 22 - 26 April 2018, Strasbourg, France 𝐸 𝑛,𝑖 = 𝜂 𝑖 − 𝜂 𝑤 𝑈 𝜂 𝑖 2 +𝑈 𝜂 𝑤 2 If 𝐸 𝑛 ≤1, the measurements are concidered consistent within their stated uncertainty 16.06.2018 Marco López

Summary Calibration setup and procedure (Si and InGaAs SPADs) Measurement uncertainty budget Standard measurement uncertainty < 0.8 % Improvements (free-beam): Filter transmission measurements Standard measurement uncertainty 0.16 % (@Si SPAD) Homogeneity Comparisons: Consistent results Double attenuator technique vs. CMI-Standard First European comparison (@InGaAs, 1550 nm) 16.06.2018 Marco López

Thank you for your attention! Acknowledgement Thank you for your attention! 16.06.2018 Marco López