Cloning, Heterologous Expression, and Characterization of the Gene Cluster Required for Gougerotin Biosynthesis  Guoqing Niu, Lei Li, Junhong Wei, Huarong.

Slides:



Advertisements
Similar presentations
Volume 11, Issue 11, Pages (November 2004)
Advertisements

Volume 13, Issue 6, Pages (June 2006)
Volume 19, Issue 9, Pages (September 2012)
Volume 20, Issue 1, Pages (January 2013)
Biosynthesis of the Antitumor Agent Chartreusin Involves the Oxidative Rearrangement of an Anthracyclic Polyketide  Zhongli Xu, Kathrin Jakobi, Katrin.
Volume 15, Issue 7, Pages (July 2008)
Volume 20, Issue 10, Pages (October 2013)
Volume 13, Issue 5, Pages (May 2006)
Volume 15, Issue 2, Pages (February 2008)
Adding Specificity to Artificial Transcription Activators
Finding the Missing Code of RNA Recognition by PUF Proteins
Volume 17, Issue 4, Pages (April 2010)
Volume 17, Issue 4, Pages (April 2010)
Volume 20, Issue 6, Pages (June 2013)
Volume 13, Issue 4, Pages (April 2006)
Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster  Susumu Okamoto,
Volume 18, Issue 10, Pages (October 2011)
Volume 25, Issue 2, Pages e4 (February 2018)
Volume 24, Issue 10, Pages e7 (October 2017)
Volume 19, Issue 2, Pages (February 2012)
Volume 22, Issue 4, Pages (April 2015)
Volume 10, Issue 5, Pages (May 2003)
Redesign of a Dioxygenase in Morphine Biosynthesis
No Need To Be Pure: Mix the Cultures!
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Yit-Heng Chooi, Ralph Cacho, Yi Tang  Chemistry & Biology 
Volume 14, Issue 2, Pages (February 2007)
Volume 20, Issue 12, Pages (December 2013)
Liujie Huo, Shwan Rachid, Marc Stadler, Silke C. Wenzel, Rolf Müller 
Volume 14, Issue 8, Pages (August 2007)
Volume 18, Issue 10, Pages (October 2011)
Volume 20, Issue 4, Pages (April 2013)
Volume 17, Issue 1, Pages (January 2010)
Volume 16, Issue 5, Pages (May 2009)
Volume 14, Issue 2, Pages (February 2007)
Volume 10, Issue 5, Pages (May 2003)
An Artificial Pathway to 3,4-Dihydroxybenzoic Acid Allows Generation of New Aminocoumarin Antibiotic Recognized by Catechol Transporters of E. coli  Silke.
Volume 15, Issue 5, Pages (May 2008)
Tandem Enzymatic Oxygenations in Biosynthesis of Epoxyquinone Pharmacophore of Manumycin-type Metabolites  Zhe Rui, Moriah Sandy, Brian Jung, Wenjun Zhang 
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 11, Issue 11, Pages (November 2004)
Volume 18, Issue 1, Pages (January 2011)
One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool  Sina Rütschlin, Sandra Gunesch, Thomas.
Volume 11, Issue 1, Pages (January 2004)
Volume 17, Issue 4, Pages (April 2010)
Volume 18, Issue 4, Pages (April 2011)
Volume 16, Issue 5, Pages (May 2009)
Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic  Meinan Lv, Junfeng Zhao, Zixin Deng,
Volume 18, Issue 12, Pages (December 2011)
Volume 18, Issue 11, Pages (November 2011)
Volume 24, Issue 2, Pages (February 2017)
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
L-DOPA Ropes in tRNAPhe
Dual Carbamoylations on the Polyketide and Glycosyl Moiety by Asm21 Result in Extended Ansamitocin Biosynthesis  Yan Li, Peiji Zhao, Qianjin Kang, Juan.
Volume 21, Issue 9, Pages (September 2014)
Volume 19, Issue 3, Pages (March 2012)
Volume 18, Issue 1, Pages (January 2011)
Volume 18, Issue 8, Pages (August 2011)
Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics*  Brian K Hubbard, Michael G Thomas, Christopher.
Volume 13, Issue 7, Pages (July 2006)
Volume 15, Issue 7, Pages (July 2008)
Volume 12, Issue 3, Pages (March 2005)
Biosynthesis of the Antitumor Chromomycin A3 in Streptomyces griseus
Volume 14, Issue 9, Pages (September 2007)
Volume 12, Issue 3, Pages (March 2005)
A One-Pot Chemoenzymatic Synthesis for the Universal Precursor of Antidiabetes and Antiviral Bis-Indolylquinones  Patrick Schneider, Monika Weber, Karen.
Volume 21, Issue 9, Pages (September 2014)
Volume 13, Issue 11, Pages (November 2006)
Volume 12, Issue 10, Pages (October 2005)
Volume 22, Issue 4, Pages vii-viii (April 2015)
Presentation transcript:

Cloning, Heterologous Expression, and Characterization of the Gene Cluster Required for Gougerotin Biosynthesis  Guoqing Niu, Lei Li, Junhong Wei, Huarong Tan  Chemistry & Biology  Volume 20, Issue 1, Pages 34-44 (January 2013) DOI: 10.1016/j.chembiol.2012.10.017 Copyright © 2013 Elsevier Ltd Terms and Conditions

Chemistry & Biology 2013 20, 34-44DOI: (10. 1016/j. chembiol. 2012. 10 Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 1 Identification of Gougerotin from S. graminearus (A) Chemical structures of gougerotin, ningnanmycin, and blasticidin S. (B) HPLC analysis of the metabolites produced by S. graminearus. (C) MS/MS analysis of the metabolites produced by S. graminearus. 1: gougerotin, [M+H]+ = 444.2 (exact mass = 443.18); 2: yunnanmycin, [M+H]+ = 445.2 (exact mass = 444.16); 5: CGA, [M+H]+ = 288.1 (exact mass = 287.08). The fragmentation patterns of the parent ions are shown, and the peaks corresponding to the characteristic fragments are labeled. See also Figure S1. Chemistry & Biology 2013 20, 34-44DOI: (10.1016/j.chembiol.2012.10.017) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 2 Organization of the Gougerotin Biosynthetic Gene Cluster in Fosmid D6-4H The gene cluster spans 28.7 kb fragment and contains 25 ORFs. Genes are indicated by different arrowheads according to their proposed roles. Chemistry & Biology 2013 20, 34-44DOI: (10.1016/j.chembiol.2012.10.017) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 3 HPLC Analysis of Gougerotin Produced by S. graminearus and Its Derivatives (A) HPLC analysis of gougerotin production in gouH mutant, gouL mutant, and gouL complementation strain. SgrWT, supernatant collected from S. graminearus wild-type; gouHDM, supernatant collected from S. graminearus gouH inactivation mutant; gouLDM, supernatant collected from S. graminearus gouL inactivation mutant; gouLc, supernatant collected from S. graminearus gouL complementation strains. 1, gougerotin; 4, 4-amino CGA; 5, CGA. (B) MS/MS analysis of the intermediate 4 accumulated in the gouL mutant. See also Figure S2. Chemistry & Biology 2013 20, 34-44DOI: (10.1016/j.chembiol.2012.10.017) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 4 Heterologous Expression of Gougerotin and Boundary Determination (A) Heterologous expression of gougerotin in S. coelicolor M1146. (B) MS/MS analysis of gougerotin produced by S. coelicolor M1146-D6-4H. (C) HPLC analysis of gougerotin produced by mutants for boundary determination. M1146-D6-4H, supernatant collected from S. coelicolor M1146 containing pSET152::D6-4H; M1146, supernatant collected from S. coelicolor M1146; M1146-pSET152, supernatant collected from S. coelicolor M1146 containing pSET152; BDorf(−1)–(−6), supernatant collected from mutant lacking ORFs(−6)–(−1); BDgouN supernatant collected from mutant lacking gouN and ORFs1–4; BDorf1–4, supernatant collected from mutant lacking ORFs1–4. 1, gougerotin; 3, compound 3; 5, CGA. See also Figure S4. Chemistry & Biology 2013 20, 34-44DOI: (10.1016/j.chembiol.2012.10.017) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 5 Intermediates Accumulation in Selected Mutants (A) HPLC analysis of intermediates accumulated in gouF, gouH, and gouK in-frame deletion mutants. (B) MS/MS analysis of the intermediate 3 accumulated in the BDgouN strain. (C) MS/MS analysis of the intermediate 4 accumulated in the gouK in-frame deletion mutant. M1146-D6-4H, supernatant collected from S. coelicolor M1146 containing pSET152::D6-4H; gouH-IFD, supernatant collected from gouH in-frame deletion mutant; gouF-IFD, supernatant collected from gouF in-frame deletion mutant; cytosine, cytosine standard (0.25 mg/ml); gouK-IFD, supernatant collected from gouK in-frame deletion mutant; 1, gougerotin; 3, compound 3; 4, 4-amino CGA; 5, CGA; 6, cytosine. The fragmentation patterns of the parent ions are shown, and the peaks corresponding to the characteristic fragments are labeled. Chemistry & Biology 2013 20, 34-44DOI: (10.1016/j.chembiol.2012.10.017) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 6 Proposed Biosynthetic Pathway of Gougerotin in S. graminearus The proteins assigned for the proposed catalytic reactions are indicated. The intermediates identified were also labeled numerically. Chemistry & Biology 2013 20, 34-44DOI: (10.1016/j.chembiol.2012.10.017) Copyright © 2013 Elsevier Ltd Terms and Conditions