Section 3 Limiting Reactants and Percentage Yield

Slides:



Advertisements
Similar presentations
Table of Contents Stoichiometry
Advertisements

Sample Problem 3.10 Calculating Amounts of Reactant and Product in a Limiting-Reactant Problem PROBLEM: A fuel mixture used in the early days of rocketry.
Chapter 5 Chemical Reactions
Section 9-3: Limiting Reactants and Percent Yield Coach Kelsoe Chemistry Pages 312–318.
Reaction Stoichiometry Chapter 9. Reaction Stoichiometry Reaction stoichiometry – calculations of amounts of reactants and products of a chemical reaction.
Mullis1 Stoichiometry (S) Composition S: Mass relationships in compounds Reaction S: Mass relationships between reactants and products To find amounts.
Chemical Quantities Chapter 9
Limiting Reactions and Percentage Yield
UNIT 1 TIER 6 Determine the limiting reactant and the reactant in excess when quantities of reacting substances are given Solve problems involving theoretical,
Chapter 9 Chemical Quantities. 9 | 2 Information Given by the Chemical Equation Balanced equations show the relationship between the relative numbers.
Stoichiometry!.
Limiting Reactants & Percent Yield
Limiting Reactants and Percent Yield
12.3 Limiting Reagent and Percent Yield
Ch. 9: Calculations from Chemical Equations
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Stoichiometry Chapter 9
Modern Chemistry Chapter 9 Stoichiometry
April 7, 2014 Today: Stoichiometry and % Yield. Percent Yield Remember, stoichiometry is used to tell you how much product you can form from X amount.
Stoichiometry Chapter 9. Step 1 Balance equations and calculate Formula Mass (FM) for each reactant and product. Example: Tin (II) fluoride, SnF 2, is.
Stoichiometry Notes (Chapter 9). I. Problems Involving Compounds a. Compounds are measured in molecules (or formula units) and single elements are measured.
Stoichiometry * The key is a balanced equation and reading the equation in terms of…Coefficients! The branch of chemistry that deals with the mass relationships.
Preview Lesson Starter Objective Stoichiometry Definition
Chapter #9 Stoichiometry. Chapter 9.1 Composition stoichiometry deals with the mass relationships of elements in compounds. Reaction stoichiometry involves.
Stoichiometry. Information Given by the Chemical Equation  The coefficients in the balanced chemical equation show the molecules and mole ratio of the.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chapter 9 Limiting Reactants The limiting reactant is the reactant.
Limiting Reactants and Percent Yield Definitions The Limiting Reactant is the reactant that limits the amounts of the other reactants that can combine.
Chapter 9 Chemical Quantities. Copyright © Houghton Mifflin Company. All rights reserved. 9 | 2 Information Given by the Chemical Equation Balanced equations.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
LIMITING REACTANTS, PERCENT YIELD, ACTUAL AND THEORETICAL YIELD.
Stoichiometry Chemical Quantities Chapter 9. What is stoichiometry? stoichiometry- method of determining the amounts of reactants needed to create a certain.
Copyright©2004 by Houghton Mifflin Company. All rights reserved. 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
Section 1 Introduction to Stoichiometry Stoichiometry Definition Composition stoichiometry deals with the mass relationships of elements in compounds.
Chapter 9 Stoichiometry Pages Intro to Stoichiometry All stoichiometric calculations start with a __________________________. To solve, you.
Stoichiometry Notes (Chapter 12). Review of Molar Mass Recall that the molar mass of a compound is the mass, in grams, of one mole of that compound.
Chapter 9 © Houghton Mifflin Harcourt Publishing Company Objective Define stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations.
Chapter 9 Stoichiometry Test REVIEW SHEET
Section 9.1 Using Chemical Equations Steven S. Zumdahl Susan A. Zumdahl Donald J. DeCoste Gretchen M. Adams University of Illinois at Urbana-Champaign.
Molecular Formulas. 2 A molecular formula is equal or a multiple of its empirical formula has a molar mass that is the product of the empirical formula.
Actual Yield The amount of product formed from the actual chemical reaction and it is usually less than the theoretical yield.
LIMITING REACTIONS INB PAGE 43. ESSENTIAL QUESTION: Why is the limiting reactant not always the reactant with fewer moles?
Chapter 9 © Houghton Mifflin Harcourt Publishing Company 8E perform stoichiometric calculations, including determination of mass relationships between.
Modern Chemistry Chapter 9 Stoichiometry
Limiting Reactants and Percent Yield
Objective Define stoichiometry.
Chapter 9 STOICHIOMETRY
Stoichiometry Notes.
SiO2 (s) + 4 HF (g) → SiF4 (g) + 2 H2O (l)
Theoretical Yield The maximum amount of product that can be produced from a given amount of reactant.
Mole Ratios Limiting Reagent Yield Gas Stoichiometry
Section 3 Limiting Reactants and Percentage Yield
Stoichiometry Vocab Theoretical Yield: the calculated amount of product yielded by a reaction (found through stoichiometry) Actual Yield: the actual amount.
Ch. 9 Stoichiometry Stoichiometry is a branch of chemistry that deals with the mass relationships of elements in compounds and the mass relationships between.
Chapter 9.3 Limiting Reactants and Percentage Yield
Reaction Stoichiometry
Chapter 9 Stoichiometry
Stoichiometry Definition
How to Use This Presentation
Preview Lesson Starter Objective Stoichiometry Definition
Stoichiometry Chapter 9.
Table of Contents Stoichiometry
Bellwork Tuesday 5.9 L of carbon dioxide is combined with 8.4 g MgO in a synthesis reaction to form magnesium carbonate. How many grams of magnesium carbonate.
Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)
Section 3 Limiting Reactants and Percentage Yield
Section 3 Limiting Reactants and Percentage Yield
Section 3 Limiting Reactants and Percentage Yield
Stoichiometry Notes.
Preview Objectives Limiting Reactants Percentage Yield
Stoichiometry Chapter 12.
Limiting Reactants/Reagents
Presentation transcript:

Section 3 Limiting Reactants and Percentage Yield Objectives Describe a method for determining which of two reactants is a limiting reactant. Calculate the amount in moles or mass in grams of a product, given the amounts in moles or masses in grams of two reactants, one of which is in excess. Distinguish between theoretical yield, actual yield, and percentage yield. Calculate percentage yield, given the actual yield and quantity of a reactant.

Section 3 Limiting Reactants and Percentage Yield The limiting reactant is the reactant that limits the amount of the other reactant that can combine and the amount of product that can form in a chemical reaction. The excess reactant is the substance that is not used up completely in a reaction.

Limited Reactants, continued Section 3 Limiting Reactants and Percentage Yield Limited Reactants, continued Sample Problem F Silicon dioxide (quartz) is usually quite unreactive but reacts readily with hydrogen fluoride according to the following equation. SiO2(s) + 4HF(g)  SiF4(g) + 2H2O(l) If 6.0 mol HF is added to 4.5 mol SiO2, which is the limiting reactant?

Limited Reactants, continued Section 3 Limiting Reactants and Percentage Yield Limited Reactants, continued Sample Problem F Solution SiO2(s) + 4HF(g)  SiF4(g) + 2H2O(l) Given: amount of HF = 6.0 mol amount of SiO2 = 4.5 mol Unknown: limiting reactant Solution: mole ratio

Limited Reactants, continued Section 3 Limiting Reactants and Percentage Yield Limited Reactants, continued Sample Problem F Solution, continued SiO2(s) + 4HF(g)  SiF4(g) + 2H2O(l) HF is the limiting reactant.

Section 3 Limiting Reactants and Percentage Yield The theoretical yield is the maximum amount of product that can be produced from a given amount of reactant. The actual yield of a product is the measured amount of that product obtained from a reaction. The percentage yield is the ratio of the actual yield to the theoretical yield, multiplied by 100.

Percentage Yield, continued Section 3 Limiting Reactants and Percentage Yield Percentage Yield, continued Sample Problem H Chlorobenzene, C6H5Cl, is used in the production of many important chemicals, such as aspirin, dyes, and disinfectants. One industrial method of preparing chlorobenzene is to react benzene, C6H6, with chlorine, as represented by the following equation. C6H6 (l) + Cl2(g)  C6H5Cl(l) + HCl(g) When 36.8 g C6H6 react with an excess of Cl2, the actual yield of C6H5Cl is 38.8 g. What is the percentage yield of C6H5Cl?

Percentage Yield, continued Section 3 Limiting Reactants and Percentage Yield Percentage Yield, continued Sample Problem H Solution C6H6 (l) + Cl2(g)  C6H5Cl(l) + HCl(g) Given: mass of C6H6 = 36.8 g mass of Cl2 = excess actual yield of C6H5Cl = 38.8 g Unknown: percentage yield of C6H5Cl Solution: Theoretical yield molar mass factor mol ratio molar mass

Percentage Yield, continued Section 3 Limiting Reactants and Percentage Yield Percentage Yield, continued Sample Problem H Solution, continued C6H6(l) + Cl2(g)  C6H5Cl(l) + HCl(g) Theoretical yield Percentage yield