Fig. 4 The activation of mTOR is necessary for exercise-enhanced axonal myelination in the CC region. The activation of mTOR is necessary for exercise-enhanced.

Slides:



Advertisements
Similar presentations
Fig. 4 3D reconfiguration of liquid metals for electronics.
Advertisements

Fig. 5 MicroLED array with 3D liquid metal interconnects.
Fig. 3 Sortilin deletion unmasks NTSR2 signaling.
Fig. 2 Reconfiguration of liquid metals into 3D structures.
Fig. 1 Characterization of the device structure.
Fig. 1 High-resolution printing of liquid metals.
Fig. 3 Cytosolic delivery of fluorescent proteins.
Fig. 3 The electrical contact of direct-printed and reconfigured liquid metals. The electrical contact of direct-printed and reconfigured liquid metals.
Fig. 1 KCC2 down-regulation is prevented in sortilin-deficient mice.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 1 Pump-probe signatures of vermilion (red HgS), black HgS, and metallic Hg. Pump-probe signatures of vermilion (red HgS), black HgS, and metallic.
Fig. 3 Exercise training enhances neuronal activity in vivo.
Fig. 1 Map of water stress and shale plays.
Fig. 2 Exercise training potentiates synaptic transmissions via mTOR activation. Exercise training potentiates synaptic transmissions via mTOR activation.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 1 Wireless, battery-free neural cuff for programmable pharmacology and optogenetics. Wireless, battery-free neural cuff for programmable pharmacology.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 3 Glucose- and structure-dependent insulin release.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 3 Implantation of the battery-free optofluidic nerve cuff system and its impact on animal behavior and nerve health. Implantation of the battery-free.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 1 The structure of the 3DGraphene foam.
Fig. 3 Gate voltage dependence of the areal iDMI and PMA.
Fig. 6 SNP rs is a functional SNP in 22Rv1 cells.
Fig. 1 Parameterization and temporal distribution of carbon isotopic events in the database. Parameterization and temporal distribution of carbon isotopic.
Fig. 2 2D QWs of different propagation lengths.
Fig. 7 LPS enhances cochlear TRPV1 expression and GTTR uptake in vivo.
Fig. 2 Hydrogel stress relaxation regulates cell cycle progression from the G1 phase to the S phase. Hydrogel stress relaxation regulates cell cycle progression.
Fig. 1 Schematic illustration and atomic-scale rendering of a silica AFM tip sliding up and down a single-layer graphene step edge on an atomically flat.
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 4 Cdc42 enhances the cellular uptake of EVs.
Fig. 1 IDH3α expression is elevated in human-derived gliomas.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 1 Synthesis and characterization of Dox-CBD-SA.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 4 SPICE simulation of stochasticity.
Fig. 2 NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ clean air policy. NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ.
Fig. 4 Dox-CBD-SA treatment shows reduced toxicity.
Compensatory metabolic pathways during long-term selegiline treatment
Fig. 4 BS-SEM images, ternary diagrams, and phase maps for the text and reverse sides of the TS. BS-SEM images, ternary diagrams, and phase maps for the.
Fig. 1 Experimental strategy and elemental and morphological analysis of 3D/2D perovskite bilayer. Experimental strategy and elemental and morphological.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 1 Structural and electrical properties of Bi2Se3/BaFe12O19.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 3 Heterologous TRPV1-mediated uptake of gentamicin is attenuated by extracellular [Ca2+]. Heterologous TRPV1-mediated uptake of gentamicin is attenuated.
Fig. 6 IVIS Lumina scan of mice and of their organs after intravenous administration of fluorescent LENK-SQ-Am NPs or control fluorescent dye solution.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
Fig. 1 TLR2 expression is induced during OIS.
ATP analogs have little effect on the conformation of the 2CARD domain
Fig. 3 Supraballs and films assembled from binary 219/217nm SPs/SMPs.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 1 Schematic structure of a fluorescently labeled eGLP1-conjugated MALAT1 ASO and internalization of fluorescent eGLP1 and eGLP1-MALAT1-ASO. Schematic.
Fig. 5 The complex of antibody and dye can afford to target imaging in the NIR-II window. The complex of antibody and dye can afford to target imaging.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 4 Characterization and SERS spectra of tetrameric metamolecules.
Fig. 1 Architected materials fabrication by projection microstereolithography–based additive manufacturing using poly(ethylene glycol) diacrylate resin.
Fig. 4 Systemic AAV9 delivery of gene editing components to ΔEx44 mice rescues dystrophin expression. Systemic AAV9 delivery of gene editing components.
Fig. 5 Phototransduction mechanisms.
Fig. 3 Supercurrents in various conductance plateau regions.
Fig. 1 Doping schematics and optical properties.
Fig. 4 Effects of individual picosecond and microsecond pulses.
Fig. 5 Flickering RSCF display at night.
Fig. 5 Controlled tumor growth inhibition study of the self-assembled nanostructures. Controlled tumor growth inhibition study of the self-assembled nanostructures.
Fig. 5 CD19-tPSMA(N9del) CAR T cell numbers in mouse and human.
Presentation transcript:

Fig. 4 The activation of mTOR is necessary for exercise-enhanced axonal myelination in the CC region. The activation of mTOR is necessary for exercise-enhanced axonal myelination in the CC region. (A) Illustrations of L5PRN axonal myelination, which is formed by mature oligodendrocytes (OLs) in the CC region. (B) Schematic diagrams of experimental protocols. Mice received 21-day exercise and rapamycin or saline injection every 3 days. (C) Representative images for myelin basic protein (MBP) staining in the medial CC region. Scale bar, 250 μm. (D) Quantitative analysis of fluorescent intensities of MBP (n = 4 animals in each group) showed elevated myelination level in runner + saline group (one-way ANOVA, F3,11 = 3.353, P = 0.0591; Tukey post hoc test, q11 = 8.721, P = 0.0003) and subsequent decrease after mTOR inhibition (q11 = 8.852, P = 0.0003). A.U., arbitrary units. (E) EM images showing myelinated axonal fibers. Scale bars, 500 nm. (F) Distribution of g-ratios. Kruskal-Wallis test showed significantly lower g-ratios in runner + saline mice comparing to nonrunner + saline group (P < 0.0001). (G) Schematic illustrations for the experimental design of oligodendrogenesis. Daily 5-bromo-2-deoxyuridine (BrdU) injections were given during the last 5 days of exercise training. (H) Representative images of BrdU-incorporated (BrdU+) cells in the medial CC region. Scale bar, 200 μm. (I) Chronic exercise increased BrdU+ cells (F3,40 = 6.727, P < 0.001; q40 = 7.519, P < 0.0001), and rapamycin injection significantly decreased BrdU+ cells (q40 = 13.51, P < 0.0001). (J to M) Double immunostaining of BrdU+ cells with OL linage marker Olig2 (J), OL progenitor cells (OPCs) marker PDGFRα (K), mature OL marker CC1 (L), and cell proliferation marker Ki67 (M). Scale bar, 50 μm. (N to P) Quantification across groups showed that exercise increased the number of Olig2+BrdU+P (F3,11 = 20.89, P < 0.0001; q11 = 6.084, P = 0.0058) (N), BrdU+PDGFRα+-labeled OPCs (F3,11 = 47.05, P < 0.0001; q11 = 9.328, P = 0.0002) (O), and BrdU+CC1+-labeled, matured OL (F3,11 = 27.16, P < 0.0001; q11 = 7.906, P = 0.0008) (P) after exercise. The OLs proliferation and maturation were reduced by rapamycin treatment (runner + saline versus runner + rapamycin groups: BrdU+Olig2+, q11 = 10.77, P < 0.0001; BrdU+PDGFRα+, q11 = 15.27, P < 0.0001; BrdU+CC1+, q11 = 12.13, P < 0.0001). (Q) Exercise also facilitated OL differentiation as suggested by fewer BrdU+Ki67+ cells (F3,11 = 14.26, P = 0.0004; q11 = 6.655, P = 0.0031), which was not affected by mTOR (runner + saline versus runner + rapamycin groups, q11 = 1.838, P = 0.5819). *P < 0.05, **P < 0.01, ***P < 0.001. n = 4 animals in each group. Error bars, SEM. Kai Chen et al. Sci Adv 2019;5:eaaw1888 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).