Ch. 2 – Intelligent Agents

Slides:



Advertisements
Similar presentations
Fig. 4-1, p Fig. 4-2, p. 109 Fig. 4-3, p. 110.
Advertisements

Slide 1Fig. 2.1a, p.25. Slide 2Fig. 2.1b, p.25 Slide 3Table 2.1, p.25.
Ch. 19 – Knowledge in Learning Supplemental slides for CSE 327 Prof. Jeff Heflin.
Artificial Intelligence: Chapter 2
Ch. 5 – Adversarial Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Plans for Today Chapter 2: Intelligent Agents (until break) Lisp: Some questions that came up in lab Resume intelligent agents after Lisp issues.
Ch. 2 – Intelligent Agents Supplemental slides for CSE 327 Prof. Jeff Heflin.
Slide 1Fig. 22.1, p.669. Slide 2Fig. 22.3, p.670.
Slide 1Fig. 17.1, p.513. Slide 2Table 17.1, p.514.
Chapter 2 Intelligent Agents
January 11, 2006AI: Chapter 2: Intelligent Agents1 Artificial Intelligence Chapter 2: Intelligent Agents Michael Scherger Department of Computer Science.
Slide 1Fig. 11.1, p.337. Slide 2Fig. 11.2, p.338.
Slide 1Fig. 19.1, p Slide 2Fig. 19.2, p. 583.
Ch. 8 – First Order Logic Supplemental slides for CSE 327 Prof. Jeff Heflin.
Slide 1Fig. 21.1, p.641. Slide 2Fig. 21.2, p.642.
Slide 1Fig. 10.1, p.293. Slide 2Fig. 10.1a, p.293.
P.464. Table 13-1, p.465 Fig. 13-1, p.466 Fig. 13-2, p.467.
P449. p450 Figure 15-1 p451 Figure 15-2 p453 Figure 15-2a p453.
Fig. 11-1, p p. 360 Fig. 11-2, p. 361 Fig. 11-3, p. 361.
CSE 471/598, CBS 598 Intelligent Agents TIP We’re intelligent agents, aren’t we? Fall 2004.
Table 6-1, p Fig. 6-1, p. 162 p. 163 Fig. 6-2, p. 164.
Cooperating Intelligent Systems Intelligent Agents Chapter 2, AIMA.
Plans for Today Chapter 2: Intelligent Agents (until break) Lisp: Some questions that came up in lab Resume intelligent agents after Lisp issues.
CSE 471/598 Intelligent Agents TIP We’re intelligent agents, aren’t we? Spring 2004.
Introduction to Logic Programming WS2004/A.Polleres 1 Introduction to Artificial Intelligence MSc WS 2009 Intelligent Agents: Chapter 2.
CSE 573 Artificial Intelligence Dan Weld Peng Dai
Introduction to AI. H.Feili, 1 Introduction to Artificial Intelligence LECTURE 2: Intelligent Agents What is an intelligent agent?
Artificial Intelligence
CHAPTER 2 Intelligent Agents. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Ch. 3 – Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Ch. 9 – FOL Inference Supplemental slides for CSE 327 Prof. Jeff Heflin.
Supplemental slides for CSE 327 Prof. Jeff Heflin
INTELLIGENT AGENTS. Agents  An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through.
Ch. 3 – Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Introduction Rationality Nature of the Environment Structure of Agents Summary.
Ch. 7 – Logical Agents Supplemental slides for CSE 327 Prof. Jeff Heflin.
Chapter 2 Agents. Intelligent Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment.
CSE 471/598 Intelligent Agents TIP We’re intelligent agents, aren’t we?
Ch. 4 – Informed Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Lecture 2: Intelligent Agents Heshaam Faili University of Tehran What is an intelligent agent? Structure of intelligent agents Environments.
Ch. 7 – Logical Agents Supplemental slides for CSE 327 Prof. Jeff Heflin.
Ch. 11 – Planning Supplemental slides for CSE 327 Prof. Jeff Heflin.
Intelligent Agents (Ch. 2)
Artificial Intelligence
How R&N define AI humanly vs. rationally thinking vs. acting
Intelligent Agents By, JITHIN M J.
Ch. 2 – Intelligent Agents
Pertemuan 2 Kecerdasan Buatan
AI as the Design of Agents
Supplemental slides for CSE 327 Prof. Jeff Heflin
Intelligent Agents Chapter 2.
Web-Mining Agents Cooperating Agents for Information Retrieval
Supplemental slides for CSE 327 Prof. Jeff Heflin
هوش مصنوعي فصل دوم عاملهاي هوشمند.
هوش مصنوعي فصل دوم عاملهاي هوشمند.
شاخصهای عملکردی بیمارستان
فرق بین خوب وعالی فقط اندکی تلاش بیشتر است
CS4341 Introduction to Artificial Intelligence
Ch. 19 – Knowledge in Learning
Artificial Intelligence Lecture 3: Intelligent Agent
EA C461 – Artificial Intelligence Problem Solving Agents
Ch. 5 – Adversarial Search
Supplemental slides for CSE 327 Prof. Jeff Heflin
Supplemental slides for CSE 327 Prof. Jeff Heflin
Supplemental slides for CSE 327 Prof. Jeff Heflin
Artificial Intelligence
Supplemental slides for CSE 327 Prof. Jeff Heflin
Ch. 5 – Adversarial Search
Supplemental slides for CSE 327 Prof. Jeff Heflin
Presentation transcript:

Ch. 2 – Intelligent Agents Supplemental slides for CSE 327 Prof. Jeff Heflin

Agent Agent percepts sensors Environment ? actions actuators rational agent: For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Table Driven Agent function Table-Driven-Agent(percept) returns an action persistent: percepts, a sequence, initially empty table, a table of actions, indexed by percept sequences append percept to the end of percepts action  Lookup(percepts, table) return action From Figure 2.7, p. 47

Table Driven Agent function name input output type function Table-Driven-Agent (percept) returns an action persistent: percepts, a sequence, initially empty table, a table of actions, indexed by percept sequences append percept to the end of percepts action  Lookup(percepts, table) return action From Figure 2.7, p. 47 assignment operation function call output value persistent variables: maintain values between function calls, like instance variables in OO, but can only be referenced within the function

Rock, Paper, Scissors Table Driven Agent Percept Sequence Action <Start> Rock <Start, Win(Rock,Scissors)> <Start, Lose(Rock,Paper)> Scissors <Start, Tie(Rock,Rock)> Paper <Start, Win(Rock,Scissors), Win (Rock,Scissors)> <Start, Win(Rock,Scissors), Lose(Rock,Paper)> <Start, Win(Rock,Scissors), Tie(Rock,Rock)> <Start, Lose(Rock,Paper), Win(Scissors,Paper)> <Start, Lose(Rock,Paper), Lose(Scissors,Rock)> <Start, Lose(Rock,Paper), Tie(Scissors,Scissors)> …. …

Goal-Based Agent Environment Agent sensors State What the world is like now How the world evolves Environment What it will be like if I do action A What my actions do What action I should do now Goals actuators Agent From Fig. 2.13, p. 52