Homework Log Tues 5/3 Lesson 8 – 5 Learning Objective:

Slides:



Advertisements
Similar presentations
Extra 5 pt pass if…. You can find the exact value of cos 75˚ with out a calculator. Good luck!!
Advertisements

Warm–up #2. Warm–up #2 Solutions –3 2 5 Warm–up #2 Solutions.
Lesson 1 – 1 Real Numbers Advanced Math/Trig No Calculator!!! Ch 1.1 – 1.5 Test Tuesday 9/15/15.
Warm – up #5. Homework Log Thurs 11/5 Lesson 3 – 3 Learning Objective: To find composite functions Hw: #306 Pg. 186 #46 – 64 even, Pg.192 #1 – 7 odd.
Warm – up #1 xy V( 0 2). Homework Log Wed 11/18 Lesson 4 – 1 Learning Objective: To graph circles Hw: #402 Pg. 220 #9, 10, 14 – 36 even,
Warm–up #10. Solve by Factoring Homework Log Thurs 10/15 Lesson 2 – 5 Learning Objective: To solve quadratic equations by quadratic formula Hw:
Warm–up #2. Warm–up #2 Solutions y x │ –2 – 1 │ │ –1 – 1 │ │ 0 – 1 │ │ 1 – 1 │ │ 2 – 1 │ –2 – x │ y – 1 │ y.
Warm–up #1. Warm–up #1 Solutions Isolate Abs Val Check in original!! NOT a soln!
Warm – up #6. Homework Log Fri 11/6 Lesson 3 – 4 Learning Objective: To write equations in standard form & graph piecewise functions Hw: #307 Pg. 192.
Warm–up #3. Warm–up #3 Solutions Homework Log Tues 11/3 Lesson 3 – 2 Learning Objective: To find difference quotients & to graph functions Hw: #304 Pg.
Warm–up #3 1. Simplify 3 −8
Do on small slip of paper Warm – up 11/23/
Homework Log Tues 11/17 Lesson 4 – 1 Learning Objective: To find difference quotients & to graph functions Hw: #401 Pg. 220 #1 – 8 all, 37 – 49 odd.
November 7, 2012 Verifying Trig Identities Homework questions HW 5.2: Pg. 387 #4-36, multiples of 4.
Warm – up # 5 C (0, –1) V (0, 2) V (0, –4) F (0, 4) F (0, –6)
Warm – up #8. Homework Log Mon 12/7 Lesson 4 – 7 Learning Objective: To identify conics Hw: #410 Pg , 4, 16, 18, 22, 26 Find foci on all.
Warm–up #4. Warm–up #4 Solutions Homework Log Wed 9/9 Lesson 1 – 4 Learning Objective: To add, subtract, & multiply polynomials Hw: #105 Pg. 36 #1 –
Pg. 407/423 Homework Pg. 407#33 Pg. 423 #16 – 18 all #19 Ѳ = kπ#21t = kπ, kπ #23 x = π/2 + 2kπ#25x = π/6 + 2kπ, 5π/6 + 2kπ #27 x = ±1.05.
Warm–up #9. Solve by Factoring 2 #s that mult to 56 –15 & add to –8 –7 set each factor = 0 Common factor first Make = 0!!!
Homework Log Tues 12/1 Lesson 4 – 5 Learning Objective: To graph translation of ellipses and hyperbolas Hw: #406 Pg. 247 #1, 3, 9, 13, 19, odd.
Warm – up #2. Homework Log Thurs 11/19 Lesson 4 – 2 Learning Objective: To determine symmetry & graph by translation Hw: #403 Pg. 228 #1 – 35 odd.
Warm–up #6. Warm–up #6 Solutions Homework Log Thurs 9/24 Lesson 1 – 9 Learning Objective: To simplify radical expressions Hw: #114 Pg. 85 #1 – 71 odd.
Warm–up #3. Warm–up #3 Solutions –1 5 Warm–up #3 Solutions –5 1.
Warm – up #3 1. Test for Symmetry: xy = 4 y–axis(–x)(y) = 4 NO! x–axis(x)(–y) = 4 NO! Origin(–x)(–y) = 4 YES! So it’s symmetric about the origin  –xy.
Homework Log Wed 1/6 Lesson 5 – 3 Learning Objective: To apply the Fundamental Theorem of Algebra & Descartes’ Rule of Signs Hw: #505 Pg. 293 #1 – 25 odd.
Warm – up #2 Find the remainder when P(x) is divided by x – c.
Homework Log Mon 12/14 Lesson 5 – 1 Learning Objective: To divide polynomials using long division & synthetic division Hw: #501 Pg – 33 odd, skip.
Warm – up #5. Homework Log Fri 1/8 Lesson 5 – 4 Learning Objective: To apply Rational Zeros Theorem Hw: #507 Pg. 302 #1 – 19 odd.
Warm – up #1 x = –2 – 2. Homework Log Tues 12/15 Lesson 5 – 1 Learning Objective: To use synthetic division with complex numbers Hw: #502 Pg. 277 # 3,
Homework Log Mon 9/14 Lesson Rev Learning Objective: To remember everything from 1.1 – 1.5!! Hw: Extra Credit Review WS.
Warm – up #2 1. Find 2 (+) and 2 (–) angles that are coterminal to 120 o. What quadrant is it in? 120 o + 1(360 o ) = 120 o + 2(360 o ) = 120 o + (–1)(360.
Warm – up #7  Closed x = –2  Open x = –2 xy –2 –3 – –2 –
Warm – up #7 1. Convert 50 pounds per second to tons per hour. 2. If a car can travel 80 miles on 3.5 gallons of gas, how far can it travel on 10 gallons.
Homework Log Fri 2/12 Lesson 7 – 1 Learning Objective: To find angle measurements Hw: #701 Pg. 385 #1 – 39 odd.
Warm – up #6 1 3 –2 – – – – 1 3–5–16 – 23– 8– 5 – 3 3– 1112 –21 3 is upper bound – 3 is lower bound Stop when neg. Stop when.
Warm – up #4. Homework Log Fri 2/5 Lesson 6 – 4 Learning Objective: To solve log and exponential equation Hw: #605 Pg. 369 #1 – 49 odd.
Precalculus Chapter 5.1 Using Fundamental Identities Objectives: Recognize and write trig identities Use trig identities to evaluate, simplify, and rewrite.
Pop Quiz! PUT EVERYTHING OFF YOUR DESK!. Homework Log Wed 2/24 Lesson 7 – 4 Learning Objective: To use fundamental properties of trig to find sides Hw:
Pop Quiz! PUT EVERYTHING OFF YOUR DESK!. Homework Log Mon 2/22 Lesson 7 – 3.
Y x Warm – up # xy
Homework Log Wed 9/30 Lesson 2 – 1 Learning Objective: To find solutions of equations Hw: #201 Pg. 101 #1 – 31 odd.
Pg. 407/423 Homework Pg. 407#33 Pg. 423 #16 – 18 all #9 tan x#31#32 #1x = 0.30, 2.84#2x = 0.72, 5.56 #3x = 0.98#4No Solution! #5x = π/6, 5π/6#6Ɵ = π/8.
Homework Log Wed 9/16 Lesson 1 – 6 Learning Objective: To add, subtract, multiply, & divide rational expressions Hw: #109 Pg. 52 # 1 – 57 eoo.
Homework Log Thurs 4/7 Lesson 8 – 1 Learning Objective: To verify trig identities Hw: #801 Pg. 484 #1 – 13 odd, 31, 33, 35.
Warm – up #12 x 2 – (sum)x + product = 0 (3)( ) (3)
Homework Log Mon 5/9 Lesson 8 – 7 Learning Objective:
Chapter 5: Analytic Trigonometry
Homework Log Fri 5/6 Lesson 8 – 7 Learning Objective:
Sum and Difference Identities
Warm–up #5 1. Simplify (
Warm–up #4 1. Evaluate − Write as exponents 4 8
Sum and Difference Identities
Sum and Difference Identities for the Sin Function
5.3/5.4 – Sum and Difference Identities
Lesson 5.1 Using Fundamental Identities
Fundamental Trigonometric Identities Essential Questions
Warm – up #4 1. Find the exact value of 2
Homework Log Fri 4/22 Lesson 8 – 4 Learning Objective:
Last time… Homework questions?.
Using Fundamental Identities (Section 5-1)
Using Fundamental Identities
Warm – up # 2 1. Rewrite in log form 5 4 =625
Half-Angle Identities
Product-to-Sum and Sum-to-Product Formulas
Multiple-Angle and Product-to-Sum Formulas (Section 5-5)
Warm–up #4 Solve & Graph. Write solution in interval notation. 1. x – 5 < –10 or –4x + 4 ≥ x – 10 < –10 or –7x + 1 < – x + 4 < –4 and 8x +
Ch 5.5.
x x HW 13: Inverse Trig Functions HW 13: Inverse Trig Functions
Warm-up: (1 − sin 2 x) sec 2 x = cos 2 x sec 2 x = 1
Review for test Front side ( Side with name) : Odds only Back side: 1-17 odd, and 27.
Presentation transcript:

Homework Log Tues 5/3 Lesson 8 – 5 Learning Objective: To use product & sum identities to rewrite trig functions Hw: #814  Pg. 516 #6–12 even, 18–24 even

Homework Log Mon 5/2 Lesson 8 – 5 Learning Objective: To use product & sum identities to rewrite trig functions Hw: #813 Pg. 516 #1 – 31 odd

5/2 or 5/3/16 Lesson 8 – 5 Product & Sum Identities Advanced Math/Trig

Learning Objective To use product & sum identities

Product Identities 2 sin 𝛼 cos 𝛽 = sin (𝛼+𝛽) + sin (𝛼−𝛽) 2 cos 𝛼 sin 𝛽 = sin (𝛼+𝛽) − sin (𝛼−𝛽) 2 cos 𝛼 cos 𝛽 = cos (𝛼+𝛽) + cos (𝛼−𝛽) 2 sin 𝛼 sin 𝛽 = cos (𝛼−𝛽) − c𝑜𝑠 (𝛼+𝛽) Given on test – just need to know how to use them

Write as a sum 1. 2sin(3x)cos(2x) 2 sin 𝛼 cos 𝛽 = sin (𝛼+𝛽) + sin (𝛼−𝛽) 2 sin 3𝑥 cos 2𝑥 = sin (3𝑥 +2𝑥)+ sin (3𝑥−2𝑥) = sin(5x) + sin(x)

Write as a sum 2. cos(4y)cos(y) 2 cos 𝛼 cos 𝛽 = cos (𝛼+𝛽) + cos (𝛼−𝛽)

Write as a sum 3. 6 sin 2𝜃 sin 6𝜃 2 sin 𝛼 sin 𝛽 = cos (𝛼−𝛽) − cos (𝛼+𝛽) 6 sin 2𝜃 sin 6𝜃 =3(2 sin 2𝜃 sin 6𝜃 ) = 3 cos (2𝜃 −6𝜃 − cos (2𝜃+6𝜃) ) = 3( cos −4𝜃 − cos (8𝜃) ) cos( −𝜃) = cos 𝜃 = 3 cos 4𝜃 −3 cos 8𝜃

Sum Identities sin 𝑥 + sin 𝑦 =2 sin 𝑥+𝑦 2 cos 𝑥−𝑦 2 sin 𝑥 − sin 𝑦 =2 cos 𝑥+𝑦 2 sin 𝑥−𝑦 2 cos 𝑥 + cos 𝑦 =2 cos 𝑥+𝑦 2 cos 𝑥−𝑦 2 cos 𝑥 − cos 𝑦 =−2 sin 𝑥+𝑦 2 sin 𝑥−𝑦 2 Given on test – just need to know how to use them

Write as a product 4. sin 135 𝑜 + sin 45 𝑜 sin 𝑥 + sin 𝑦 =2 sin 𝑥+𝑦 2 cos 𝑥−𝑦 2 sin 135 𝑜 + sin 45 𝑜 =2 sin 135 𝑜 + 45 𝑜 2 cos 135 𝑜 − 45 𝑜 2 =2 sin 180 𝑜 2 cos 90 𝑜 2 = 2 sin 90 𝑜 cos 45 𝑜

Write as a product 5. cos 3𝜃 − cos 9𝜃 cos 𝑥 − cos 𝑦 =−2 sin 𝑥+𝑦 2 sin 𝑥−𝑦 2 cos 3𝜃− cos 9𝜃 =−2 sin 3𝜃+9𝜃 2 sin 3𝜃−9𝜃 2 =−2 sin 12𝜃 2 sin −6𝜃 2 sin( −𝜃) =− sin 𝜃 = −2 sin 6𝜃 sin (−3𝜃) = 2 sin 6𝜃 sin 3𝜃

Verify 2 sin 4𝜃+2𝜃 2 cos 4𝜃−2𝜃 2 2 cos 4𝜃+2𝜃 2 cos 4𝜃−2𝜃 2 6. sin 4𝜃 + sin 2𝜃 cos 4𝜃 + cos 2𝜃 = tan 3𝜃 2 sin 4𝜃+2𝜃 2 cos 4𝜃−2𝜃 2 2 cos 4𝜃+2𝜃 2 cos 4𝜃−2𝜃 2 = sin 3𝜃 cos 𝜃 cos 3𝜃 cos 𝜃 = sin 3𝜃 cos 3𝜃 = tan 3𝜃

Verify 7. sin 𝐴+𝐵 sin (𝐴−𝐵) = 𝑐𝑜𝑠 2 𝐵− 𝑐𝑜𝑠 2 𝐴 = 1 2 cos 2𝐵− cos 2𝐴 = 1 2 2 𝑐𝑜𝑠 2 𝐵−1 − 2 𝑐𝑜𝑠 2 𝐴−1 = 1 2 2 𝑐𝑜𝑠 2 𝐵−1−2 𝑐𝑜𝑠 2 𝐴+1 = 1 2 2 𝑐𝑜𝑠 2 𝐵−2 𝑐𝑜𝑠 2 𝐴 = 𝑐𝑜𝑠 2 𝐵− 𝑐𝑜𝑠 2 𝐴

Verify 8. sin 2𝑥 − sin 4𝑥 + sin 6𝑥 =4 cos 3𝑥 cos 2𝑥 sin 𝑥 =(2 cos 3𝑥 )( sin 3𝑥 − sin 𝑥 ) Distribute =2 cos 3𝑥 sin 3𝑥 −2 cos 3𝑥 sin 𝑥 = sin 6𝑥−( sin 4𝑥 − sin 2𝑥 ) = sin 6𝑥− sin 4𝑥 + sin 2𝑥

Verify 9. sin 12𝑥 sin 4𝑥 + cos 6𝑥 cos 10𝑥 = cos 6𝑥 cos 2𝑥

Verify 10. cos 7𝑥 sin 𝑥 − sin 2𝑥 cos 6𝑥 =− cos 5𝑥 sin 𝑥 = 1 2 sin 8𝑥 − sin 6𝑥 − 1 2 ( sin 8𝑥 + sin (−4𝑥)) = 1 2 sin 8𝑥 − 1 2 sin 6𝑥 − 1 2 sin 8𝑥 + 1 2 sin 4𝑥 = 1 2 (− sin 6𝑥 + sin 4𝑥 ) = 1 2 ( sin 4𝑥 − sin 6𝑥 ) = 1 2 2 cos 4𝑥+6𝑥 2 sin 4𝑥−6𝑥 2 = cos 5𝑥 sin (−𝑥) =− cos 5𝑥 sin 𝑥

Verify 11. sin 3𝑥 − sin 𝑥 +2 sin 2𝑥 cos 𝑥 =2 sin 3𝑥 =( sin 3𝑥 − sin 𝑥 )+( sin 3𝑥 + sin 𝑥 ) =2 sin 3𝑥 12. cos 9𝑥 − cos 7𝑥 +2 cos 8𝑥 cos 𝑥 =2 cos 9𝑥 =( cos 9𝑥 − cos 7𝑥 )+( cos 9𝑥+ cos 7𝑥 ) =2 cos 9𝑥

Ticket Out the Door Find

Homework #813Pg. 516 #1 – 31 odd