XFEL Beam Dynamics Activity at CANDLE

Slides:



Advertisements
Similar presentations
BC System – Review Options ● BC2 working point (energy-charge-compr.) ● 2BC (rf-rf-bc-rf-bc-rf) ● table: 2BC (rf-rf-bc-rf-bc-rf) dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf)
Advertisements

Update of RTML, Status of FNAL L-band and CLIC X-band BPM, Split SC Quadrupole Nikolay Solyak Fermilab (On behalf of RTML team) LCWS2010 / ILC 10, March.
Emittance dilution due to misalignment of quads and cavities of ILC main linac revised K.Kubo For beam energy 250 GeV,
Emittance dilution due to misalignment of quads and cavities of ILC main linac K.Kubo For beam energy 250 GeV, TESLA-type optics for 24MV/m.
1 Optimal focusing lattice for XFEL undulators: Numerical simulations Vitali Khachatryan, Artur Tarloyan CANDLE, DESY/MPY
Christopher Gerth, Michael Röhrs, Holger Schlarb DESY Hamburg Optics for Diagnostic Section BC1 in the European XFEL.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Main Linac Simulation - Main Linac Alignment Tolerances - From single bunch effect ILC-MDIR Workshop Kiyoshi KUBO References: TESLA TDR ILC-TRC-2.
C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Beam Dynamics Justifications of modification of.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
Drive Beam Linac Stability Issues Avni AKSOY Ankara University.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
XFEL BC Review Meeting, 18/12/2006, Christopher Gerth Christopher Gerth, Michael Röhrs, Holger Schlarb DESY Hamburg Optics Layout of the Diagnostic Sections.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
28-May-2008Non-linear Beam Dynamics WS1 On Injection Beam Loss at the SPring-8 Storage Ring Masaru TAKAO & J. Schimizu, K. Soutome, and H. Tanaka JASRI.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
T. Limberg Position of the 3rd Harmonic System. Injector (with first Bunch Compression Stage) 2 European XFEL MAC May 2010 T. Limberg.
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
LCLS-II Injector layout design and study Feng Zhou 8/19/2015.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
X-band Based FEL proposal
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Recirculating Linac Acceleration  End-to-end.
Review of Alignment Tolerances for LCLS-II SC Linac Arun Saini, N. Solyak Fermilab 27 th April 2016, LCLS-II Accelerator Physics Meeting.
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
Frank Stulle, ILC LET Beam Dynamics Meeting CLIC Main Beam RTML - Overview - Comparison to ILC RTML - Status / Outlook.
A. Aksoy Beam Dynamics Studies for the CLIC Drive Beam Accelerator A. AKSOY CONTENS ● Basic Lattice Sketches ● Accelerating structure ● Short and long.
Impedance & Instabilities
Previous presentation
Orbit Control For Diamond Light Source
Sara Thorin, MAX IV Laboratory
Linac4 Beam Characteristics
LCLS2sc MAD files: Injector to Bypass Line
Beam Dynamics in Curved ILC Main Linac (following earth curvature)
X-band FEL beam dynamics issues
IHEP-CLIC Collaboration (Beam Dynamics)
XFEL Beam Physics 10/30/2015 Tor Raubenheimer.
Jeffrey Eldred, Sasha Valishev
Thermal emittance measurement Gun Spectrometer
Progress activities in short bunch compressors
Igor Zagorodnov and Martin Dohlus
Overview Multi Bunch Beam Dynamics at XFEL
ERL working modes Georg Hoffstaetter, Professor Cornell University / CLASSE / SRF group & ERL effort High Current mode High Coherence mode High Buch charge.
DA study for CEPC Main Ring
CEPC Injector Damping Ring
LHC (SSC) Byung Yunn CASA.
Simulation Calculations
ICFA Mini-Workshop, IHEP, 2017
Linac (WBS 1.2.2) Vinod Bharadwaj April 23, 2002
Modified Beam Parameter Range
Laser Heater Integration into XFEL. Update.
CEPC optics and booster optics
CEPC Injector Linac beam dynamics
Coupler Effects in High Energy Part of XFEL Linac
Vitali Khachatryan, Arthur Tarloyan, Vahe Sahakyan, V. Tsakanov
Evgenij Kot XFEL beam dynamics meeting,
Electron Optics & Bunch Compression
CEPC injector beam dynamics
Injector for the Electron Cooler
Possibility of MEIC Arc Cell Using PEP-II Dipole
Main Linac Beam Optics and Tolerances
Igor Zagorodnov and Martin Dohlus
Presentation transcript:

XFEL Beam Dynamics Activity at CANDLE V. Tsakanov for CANDLE (Armenia) XFEL Beam Project Meeting , 19 Dec 2005

Parameter list BC Booster Linac Energy (GeV) 0.5-2.0 2.0-20 Main linac 2. GeV 20 GeV 0.5 GeV Booster Linac Energy (GeV) 0.5-2.0 2.0-20 Accel. Grad (MV/m) 16 20.8 FODO cells 6 50 Emittance (mm-mrad) 1.4 1.4 Bunch charge (nC) 1 1 Bunch rms length (μm) 112 24 Initial cor. energy spread 1.75% 0.4% Inital uncor. Energy spread 500 keV 2500 keV (includes laser heater) Misal. Quads, Cav. (mm) 0.5 0.5 BPM – 0.1mm, res – 0.02mm

T. Weiland, I. Zagorodnov, TESLA Rep. 2003-19, 2003. Wake Potentials Wake functions T. Weiland, I. Zagorodnov, TESLA Rep. 2003-19, 2003.

Energy Spread σcor=0.4% σcor=0.012% (2.4 MeV) M. Dohlus Linac Entrance-2 GeV Linac End – 20 GeV σcor=0.4% σcor=0.012% (2.4 MeV)

Without initial energy spread 20.8 MV/m With initial energy spread

Coherent Oscillations Wakefield Effects ( Zero initial energy spread) Transverse wake Longitudinal Wake (chromatic) XFEL Lattice : chromatic dominated emittance dilution

Coherent Oscillations Chromatic effects ( initial energy spread) Uncorrelated Correlated x x’ Eo Eo+ΔE Eo-ΔE

Cavity Misalignments F D σcavity=0.5mm

Modules Misalignments Standard cell 2,4 and 6 modules per FODO cell

Correlated Misalignments F D σcor=0.5mm Δμ- phase advance per cor. length Betatron phase contrib. Δμ=130o (~4 modules) R.Brinkmann, V.Tsakanov, Snowmass, 2001

Cavity tilts F D σtilt=0.25mrad

Quadrupoles misalignments. One-to- One Correction

One-to One Correction Uncorrelated effects

Quad misalignments. One-to-One Correction Correlated effects

Summary of Emittance Dilution (Standard Cell) Booster Linac Coherent oscillations uncorrelated 6·10-6 2·10-4 correlated 2·10-3 1.2·10-3 Cavity Misalignments 5·10-6 3·10-7 Modules Misalignments 4·10-5 2.5·10-6 Correlated Misal. (130o) - 7·10-6 Cavity tilts uncorrelated 5.8·10-5 0.6% correlated 0.6% 1.9% One-to-One correction uncorrelated 6.3·10-5 0.4% correlated 1.7% 2% Total Emittance dilution <5% with 2 Modules/Cell

Possible modification Modules per cell 2 Mod 4 Mod 6 Mod Emittance preservation <5% < 2% ~ 1% Beta max 40m ~ 70 m ~100m Number of FODO cells 52 26 18 Number of quads 104 52 36 Quad Strength K (m-2) 0.28 ~0.17 ~0.12 Total length 1248m ~1050m ~1000m