Fig. 1 Humans are equipped with high-threshold and very fast conducting primary afferents. Humans are equipped with high-threshold and very fast conducting.

Slides:



Advertisements
Similar presentations
Discriminative and Affective Touch: Sensing and Feeling
Advertisements

Fig. 4 3D reconfiguration of liquid metals for electronics.
Fig. 5 MicroLED array with 3D liquid metal interconnects.
Fig. 2 Reconfiguration of liquid metals into 3D structures.
Fig. 1 High-resolution printing of liquid metals.
Fig. 3 The electrical contact of direct-printed and reconfigured liquid metals. The electrical contact of direct-printed and reconfigured liquid metals.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 4 INS spectra of different human bones from the Roman period [humerus, ulna, femur, and fibula from the same skeleton, Guidonia-Montecelio, Italy.
Fig. 2 CFD results. CFD results. Results of CFD simulations in horizontal (left column) and vertical (right column) cross-sections. All models oriented.
Fig. 3 Vibrational spectra of human bones from the Copper Age (Scoglietto cave, Italy). Vibrational spectra of human bones from the Copper Age (Scoglietto.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 1 Pump-probe signatures of vermilion (red HgS), black HgS, and metallic Hg. Pump-probe signatures of vermilion (red HgS), black HgS, and metallic.
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 3 Electron PSD in various regions.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 2 Neural discharge of A-HTMRs and perception of mechanical pain in response to punctate forces. Neural discharge of A-HTMRs and perception of mechanical.
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Influence of the Roadmap Epigenomics Program on the field of epigenomics research. Influence of the Roadmap Epigenomics Program on the field of.
Fig. 2 Reference-fixing experiment, results.
Fig. 3 Swarm material properties.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 2 TRXSS data. TRXSS data. TRXSS data covering delay times from 10 ns to 10 ms for wild-type DmCry (A), for the DmCry(H378A) mutant (B), and for XlPho.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 1 Reference-fixing experiment, setup.
Fig. 5 Structural photocycle for DmCry.
FTIR-ATR spectra of Neolithic faunal bones (Mora Cavorso cave, Italy)
Fig. 1 Concept of the livestock transition in China between 1980 and Concept of the livestock transition in China between 1980 and The left-
Fig. 3 FcRL1 is passively recruited into B cell immunological synapses upon BCR engagement in primary spleen B cells. FcRL1 is passively recruited into.
Fig. 1 Distribution of total and fake news shares.
Eruptive history of the Campi Flegrei caldera during the last 15 ka
Fig. 2 2D QWs of different propagation lengths.
Fig. 1 Map of the study area including the northwestern end of the Hawaiian Ridge and the southern portion of the ESC. Map of the study area including.
Fig. 3 Mechanical pain sensitivity is dependent on Aβ afferents but not PIEZO2 stretch-gated ion channels. Mechanical pain sensitivity is dependent on.
Electronic structure of the oligomer (n = 8) at the UB3LYP/6-31G
Fig. 2 EUV TG signal. EUV TG signal. Black lines in (A), (B), and (C) are the EUV TG signals from Si3N4 membranes at LTG = 110, 85, and 28 nm, respectively,
Fig. 6 Longevity and mechanical perturbation of a liquid membrane.
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 3 Comparison of the reflective properties.
Fig. 3 Load dependence of friction force and corresponding COF.
Fig. 1 Sectional distributions of pigment concentrations measured along the Mediterranean Sea and in the Eastern Atlantic Ocean. Sectional distributions.
Fig. 1 A time-course RNA-seq analysis reveals prominent IRF8 expression in the spinal cord during the recovery phase after SCI. A time-course RNA-seq analysis.
Fig. 4 Horizontal structures of the four types of MJO.
An ultrafast system for signaling mechanical pain in human skin
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 4 The distribution of the target diagnoses in premutation carriers and controls for codes received before age 40. The distribution of the target diagnoses.
Fig. 4 Praying Prophet by Lorenzo Monaco: Mapping lake pigments and associated substrate. Praying Prophet by Lorenzo Monaco: Mapping lake pigments and.
Fig. 1 Cross-sectional images of He-implanted V/Cu/V samples.
Fig. 2 Magnetic properties of FGT/Pt bilayer.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 2 Sampling. Sampling. (A) Extant stratigraphic section. Zenithal (B) and frontal (C) views of the flowstone capping the excavated deposit. The rectangle.
Fig. 2 Characterizing the performance of msTENG.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 4 BS-SEM images, ternary diagrams, and phase maps for the text and reverse sides of the TS. BS-SEM images, ternary diagrams, and phase maps for the.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 1 Structural and electrical properties of Bi2Se3/BaFe12O19.
Fig. 2 Large-scale μXRF and EDS characterization of the text-containing side of the TS. Large-scale μXRF and EDS characterization of the text-containing.
Fig. 2 Polarized emission from printed perovskite nanocomposites.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
ATP analogs have little effect on the conformation of the 2CARD domain
Fig. 2 Supraballs and films from binary SPs.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 1 Characterizations of M-hydrogel.
Presentation transcript:

Fig. 1 Humans are equipped with high-threshold and very fast conducting primary afferents. Humans are equipped with high-threshold and very fast conducting primary afferents. (A) Location of myelinated HTMR receptive fields from recordings in the peroneal and radial nerves. Each red dot represents the location of an individual A-HTMR (n = 18). The pattern of receptive field spots, mapped with a Semmes-Weinstein monofilament, is shown for two A-HTMRs (marked by arrows; top, radial; bottom, peroneal). Receptive field spots were redrawn on photographic images so they can easily be seen. The horizontal lines represent the medial-lateral dimension, and the vertical lines represent the proximal-distal dimension. The average size of an A-HTMR receptive field, mapped using a filament force six times higher than that for an A-LTMR, was 26.8 mm2 (±6.9; n = 9). This was significantly smaller than the receptive field of field afferents (100.5 ± 7.2 mm2; n = 51; P < 0.0001, Dunnett’s test) but was not different from that of SA1 afferents (41.6 ± 7.5 mm2; n = 17; P > 0.05, Dunnett’s test). (B) Brush responses of an A-HTMR and a field afferent. Using a soft or a coarse brush, the skin area centered on the receptive field of the recorded afferent was gently stroked at 3 cm/s. The field afferent responded vigorously to soft brush stroking. The A-HTMR did not respond to soft brush stroking, but it did respond to coarse brush stroking. The mechanical threshold of this A-HTMR was 4 mN, and the conduction velocity was 52 m/s. It responded to pinching, and its receptive field moved with skin translocation. Freq, frequency. (C) Mechanical threshold distribution of HTMRs and LTMRs in the recorded sample. For RA1 afferents, the preferred stimulus is hair movement, so monofilament thresholds were not measured. For A-HTMR, the median mechanical threshold was 10.0 mN (Q, 5.5–20.0; n = 18). This was significantly higher than the mechanical thresholds of all tested A-LTMR types (at least P < 0.001 for all individual comparisons, Dunn’s test) but was not different from C-HTMRs (10.0 mN; Q, 10.0–27.0; n = 5). (D) Spike activity of an A-HTMR to electrical and mechanical stimulations of the receptive field. Individual electrically and mechanically evoked spikes were superimposed on an expanded time scale to show that the electrically stimulated spike (used for latency measurement) was from the same unit as the one that was mechanically probed at the receptive field. (E) Conduction velocities of HTMRs and LTMRs to surface electrical stimulation (and monofilament tapping in case of one HTMR, conducting at 30 m/s). The data show individual and average (±SEM) conduction velocities of single afferents from peroneal (circles) and radial (diamonds) nerves. Conduction velocities of peroneal A-HTMRs (33.5 ± 2.1; n = 13) were statistically indistinguishable from peroneal A-LTMRs [SA1: 39.8 ± 2.3, n = 10; SA2: 38.6 ± 4.0, n = 4; RA1: 36.8 ± 2.8, n = 6; field: 34.3 ± 1.3, n = 18; F(4,46) = 1.70; P = 0.17, one-way analysis of variance (ANOVA)]. All three peroneal C-HTMRs were conducting at 0.9 m/s. In comparison to the peroneal nerve, conduction velocities of A-fiber types were faster in the radial nerve as expected (A-HTMR: 54.5 ± 2.4, n = 4; SA1: 56.8 m/s, n = 1; SA2: 53.0 ± 3.3, n = 3; RA1: 48.7 ± 1.6, n = 3; field: 47.3 ± 0.2, n = 2) (46). Both radial C-HTMRs were conducting at 1.1 m/s. Conduction velocity of RA2 afferents was not measured. (F) Slowly adapting properties of an A-HTMR at higher indentation forces. Spike activity of a field afferent and an A-HTMR during monofilament stimulation at three different forces, applied using electronic filaments with force feedback. Compared to the field afferent, the A-HTMR showed a sustained response at a lower indentation force (see also fig. S1). Saad S. Nagi et al. Sci Adv 2019;5:eaaw1297 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).