Volume 18, Issue 11, Pages (November 2011)

Slides:



Advertisements
Similar presentations
Pratistha Ranjitkar, Amanda M. Brock, Dustin J. Maly 
Advertisements

Volume 12, Issue 6, Pages (June 2005)
Sweetly Expanding Enzymatic Glycodiversification
Volume 11, Issue 8, Pages (August 2004)
Volume 21, Issue 4, Pages (April 2014)
Volume 21, Issue 2, Pages (February 2014)
Volume 20, Issue 1, Pages (January 2013)
Volume 15, Issue 3, Pages (March 2008)
Volume 13, Issue 5, Pages (May 2006)
Ping Wang, Katelyn A. Doxtader, Yunsun Nam  Molecular Cell 
Volume 15, Issue 2, Pages (February 2008)
Marcel Zimmermann, Julian D. Hegemann, Xiulan Xie, Mohamed A. Marahiel 
Volume 9, Issue 2, Pages (February 2002)
The Structure of the Cytoplasmic Domain of the Chloride Channel ClC-Ka Reveals a Conserved Interaction Interface  Sandra Markovic, Raimund Dutzler  Structure 
Volume 11, Issue 6, Pages (December 2006)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Volume 23, Issue 10, Pages (October 2016)
Volume 12, Issue 6, Pages (June 2005)
Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster  Susumu Okamoto,
Messenger RNA-Programmed Incorporation of Multiple N-Methyl-Amino Acids into Linear and Cyclic Peptides  Takashi Kawakami, Hiroshi Murakami, Hiroaki Suga 
Volume 10, Issue 12, Pages (December 2003)
Volume 22, Issue 4, Pages (April 2015)
A Photoreactive Small-Molecule Probe for 2-Oxoglutarate Oxygenases
Volume 14, Issue 10, Pages (October 2007)
Redesign of a Dioxygenase in Morphine Biosynthesis
Volume 14, Issue 5, Pages (May 2006)
Volume 20, Issue 12, Pages (December 2013)
Kevin J. Forsberg, Sanket Patel, Timothy A. Wencewicz, Gautam Dantas 
Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides  Tobias W. Giessen, Alexander M.
The Albonoursin Gene Cluster of S. noursei
Beena Krishnan, Lila M. Gierasch  Chemistry & Biology 
Ins and Outs of Kinase DFG Motifs
Volume 12, Issue 12, Pages (December 2005)
Volume 26, Issue 2, Pages e3 (February 2018)
Volume 21, Issue 12, Pages (December 2014)
Andy Weiss, Renee M. Fleeman, Lindsey N. Shaw  Cell Chemical Biology 
The Ribosome Emerges from a Black Box
PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules  Steffen Lorenz Drees,
Volume 18, Issue 4, Pages (April 2011)
A Subdomain Swap Strategy for Reengineering Nonribosomal Peptides
Volume 15, Issue 11, Pages (November 2008)
Volume 10, Issue 11, Pages (November 2003)
Volume 19, Issue 5, Pages (May 2012)
Volume 20, Issue 4, Pages (April 2013)
An Artificial Pathway to 3,4-Dihydroxybenzoic Acid Allows Generation of New Aminocoumarin Antibiotic Recognized by Catechol Transporters of E. coli  Silke.
Volume 21, Issue 2, Pages (February 2014)
Volume 13, Issue 6, Pages (June 2006)
Volume 24, Issue 12, Pages e5 (December 2017)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Surface-Induced Dissociation of Homotetramers with D2 Symmetry Yields their Assembly Pathways and Characterizes the Effect of Ligand Binding  Royston S.
One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool  Sina Rütschlin, Sandra Gunesch, Thomas.
Volume 14, Issue 11, Pages (November 2006)
Volume 20, Issue 1, Pages (October 2005)
Mirjana Lilic, Milos Vujanac, C. Erec Stebbins  Molecular Cell 
Cdc28-Dependent Regulation of the Cdc5/Polo Kinase
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
L-DOPA Ropes in tRNAPhe
Aza-Tryptamine Substrates in Monoterpene Indole Alkaloid Biosynthesis
Pratistha Ranjitkar, Amanda M. Brock, Dustin J. Maly 
Volume 17, Issue 4, Pages (February 2005)
Volume 18, Issue 3, Pages (March 2011)
Volume 20, Issue 10, Pages (October 2013)
Volume 18, Issue 11, Pages (November 2011)
Structure of the EntB Multidomain Nonribosomal Peptide Synthetase and Functional Analysis of Its Interaction with the EntE Adenylation Domain  Eric J.
Mark S. Dunstan, Debraj GuhaThakurta, David. E. Draper, Graeme L. Conn 
Volume 22, Issue 11, Pages (November 2015)
Volume 17, Issue 5, Pages (May 2009)
A One-Pot Chemoenzymatic Synthesis for the Universal Precursor of Antidiabetes and Antiviral Bis-Indolylquinones  Patrick Schneider, Monika Weber, Karen.
Bacterial and Eukaryotic Phenylalanyl-tRNA Synthetases Catalyze Misaminoacylation of tRNAPhe with 3,4-Dihydroxy-L-Phenylalanine  Nina Moor, Liron Klipcan,
The Albonoursin Gene Cluster of S. noursei
Presentation transcript:

Volume 18, Issue 11, Pages 1362-1368 (November 2011) Nonribosomal Peptide Synthesis in Animals: The Cyclodipeptide Synthase of Nematostella  Jérôme Seguin, Mireille Moutiez, Yan Li, Pascal Belin, Alain Lecoq, Matthieu Fonvielle, Jean-Baptiste Charbonnier, Jean-Luc Pernodet, Muriel Gondry  Chemistry & Biology  Volume 18, Issue 11, Pages 1362-1368 (November 2011) DOI: 10.1016/j.chembiol.2011.09.010 Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 1 Alignment of the Protein Sequences of the Eight Known CDPSs and the Three Hypothetical Proteins from N. vectensis Positions with identical residues in known CDPSs are indicated by a red background. Positions with identical residues in at least 10 proteins (nine proteins if the position does not exist in the truncated Nvec-CDPS3) are indicated by a yellow background. Positions with identical residues in Nvec-CDPS1, Nvec-CDPS2, and Nvec-CDPS3 are shown in purple. The basic residues, which define a patch of positive charge, are indicated by a blue background. The secondary structural elements of AlbC (Sauguet et al., 2011) are indicated above the alignment. See also Figure S1. Chemistry & Biology 2011 18, 1362-1368DOI: (10.1016/j.chembiol.2011.09.010) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 2 Comparison of the Nvec-CDPS2 model with the crystal structure of AlbC Surface-accessible pockets of (A) Nvec-CDPS2 and (B) AlbC with the phenylalanyl moiety of a Phe-tRNAPhe. Distribution of Arg/Lys (blue) and Asp/Glu (red) residues on the surface of (C) Nvec-CDPS2 and (D) AlbC. See also Figure S2. Chemistry & Biology 2011 18, 1362-1368DOI: (10.1016/j.chembiol.2011.09.010) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 3 LC-MS/MS Analysis of the Cyclodipeptides Secreted into the Culture Supernatant of E. coli Cells Producing Nvec-CDPS2 (A) UV traces (λ = 214 nm) of the culture medium of Nvec-CDPS2-producing E. coli cells after 20 hr (orange) and 44 hr (blue) of expression, and of cells containing the empty vector (gray). Cyclodipeptide peaks are surrounded by a rectangle. (B) Corresponding EIC peaks, showing the cyclodipeptide peaks and their identity. (C) MS/MS of one of the major compounds, identified as cWF. The fragmentation pattern is characteristic of a cyclodipeptide and red labels at 120.0 ± 0.1 and 159 ± 0.1 match the immonium ions of Phe (iPhe) and Trp (iTrp), respectively. The m/z peaks marked with an asterisk are specific to Trp fragmentation (Falick et al., 1993; Papayannopoulos, 1995). See also Figures S3 and S4. Chemistry & Biology 2011 18, 1362-1368DOI: (10.1016/j.chembiol.2011.09.010) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 4 In Vitro Enzymatic Assays with Purified Nvec-CDPS2 (A) EIC chromatograms corresponding to the formation of cFF (m/z = 295) catalyzed by 1 μM Nvec-CDPS2 at 30 min (yellow), 1 hr (blue), and 3 hr (red). (B) EIC chromatograms corresponding to the formation of cFF (m/z = 295) at 3 hr catalyzed by 125 nM Nvec-CDPS2 (black), 500 nM Nvec-CDPS2 (gray), and 1 μM Nvec-CDPS2 (red). (C) Formation of cFF catalyzed by 1 μM Nvec-CDPS2, after 3 hr: MS spectrum of products eluted at 29.1 min, identified as cFF (m/z = 295.1) and 13C9,15N-labeled cFF (m/z = 305.1). (D) MS/MS spectrum of the product formed by Nvec-CDPS2, identified as cFF (m/z = 295.1). (E) Covalent labeling of Nvec-CDPS2 by tritiated Phe transferred from [3H]Phe-tRNAPhe, as described in Experimental Procedures. Wild-type AlbC and the S37A variant are used as positive and negative controls, respectively. See also Figure S5. Chemistry & Biology 2011 18, 1362-1368DOI: (10.1016/j.chembiol.2011.09.010) Copyright © 2011 Elsevier Ltd Terms and Conditions