Modelling Toehold-Mediated RNA Strand Displacement

Slides:



Advertisements
Similar presentations
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Advertisements

Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Koen E. Merkus, Menno W.J. Prins, Cornelis Storm  Biophysical Journal 
Coarse-Grained Model of SNARE-Mediated Docking
Yinghao Wu, Barry Honig, Avinoam Ben-Shaul  Biophysical Journal 
Yufeng Liu, Meng Ke, Haipeng Gong  Biophysical Journal 
Dejun Lin, Alan Grossfield  Biophysical Journal 
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Shaogui Wu, Laicai Li, Quan Li  Biophysical Journal 
Volume 110, Issue 2, Pages (January 2016)
Dynamics of Active Semiflexible Polymers
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Nanopore Sequencing: Forcing Improved Resolution
Volume 111, Issue 10, Pages (November 2016)
Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis  Pierre D.J. Moens, Michelle A. Digman,
Meng Qin, Jian Zhang, Wei Wang  Biophysical Journal 
Volume 114, Issue 1, Pages (January 2018)
Anton Arkhipov, Wouter H. Roos, Gijs J.L. Wuite, Klaus Schulten 
Volume 101, Issue 2, Pages (July 2011)
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Brittny C. Davis, Jodian A. Brown, Ian F. Thorpe  Biophysical Journal 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Francis D. Appling, Aaron L. Lucius, David A. Schneider 
“DFG-Flip” in the Insulin Receptor Kinase Is Facilitated by a Helical Intermediate State of the Activation Loop  Harish Vashisth, Luca Maragliano, Cameron F.
Volume 108, Issue 7, Pages (April 2015)
Protein Collective Motions Coupled to Ligand Migration in Myoglobin
Actin-Regulator Feedback Interactions during Endocytosis
Firdaus Samsudin, Alister Boags, Thomas J. Piggot, Syma Khalid 
Anna M. Popova, Peter Z. Qin  Biophysical Journal 
Volume 110, Issue 2, Pages (January 2016)
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
Yuliang Zhang, Yuri L. Lyubchenko  Biophysical Journal 
Ariel Afek, Itamar Sela, Noa Musa-Lempel, David B. Lukatsky 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Replica Exchange Molecular Dynamics Simulations Provide Insight into Substrate Recognition by Small Heat Shock Proteins  Sunita Patel, Elizabeth Vierling,
Untangling the Influence of a Protein Knot on Folding
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Dynamics of Active Semiflexible Polymers
Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein
Volume 111, Issue 10, Pages (November 2016)
Jonathan E. Hiorns, Oliver E. Jensen, Bindi S. Brook 
Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping  Elham Hamed, Sinan Keten  Biophysical.
Cédric Reymond, Martin Bisaillon, Jean-Pierre Perreault 
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Ion-Induced Defect Permeation of Lipid Membranes
Effect of Grafting on Aggregation of Intrinsically Disordered Proteins
Phosphatase Specificity and Pathway Insulation in Signaling Networks
Cell Growth and Size Homeostasis in Silico
Dynamic Transmission of Protein Allostery without Structural Change: Spatial Pathways or Global Modes?  Tom C.B. McLeish, Martin J. Cann, Thomas L. Rodgers 
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Chris Neale, Henry D. Herce, Régis Pomès, Angel E. García 
Huan-Xiang Zhou, Osman Bilsel  Biophysical Journal 
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Volume 98, Issue 10, Pages (May 2010)
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Raghvendra Pratap Singh, Ralf Blossey, Fabrizio Cleri 
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Systems Biophysics: Multiscale Biophysical Modeling of Organ Systems
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Transfer of Arginine into Lipid Bilayers Is Nonadditive
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Yinghao Wu, Barry Honig, Avinoam Ben-Shaul  Biophysical Journal 
Joana Pinto Vieira, Julien Racle, Vassily Hatzimanikatis 
Volume 114, Issue 6, Pages (March 2018)
Ai Kia Yip, Pei Huang, Keng-Hwee Chiam  Biophysical Journal 
Volume 105, Issue 9, Pages (November 2013)
Volume 115, Issue 6, Pages (September 2018)
Volume 96, Issue 2, Pages L7-L9 (January 2009)
Seongwon Kim, Takako Takeda, Dmitri K. Klimov  Biophysical Journal 
Presentation transcript:

Modelling Toehold-Mediated RNA Strand Displacement Petr Šulc, Thomas E. Ouldridge, Flavio Romano, Jonathan P.K. Doye, Ard A. Louis  Biophysical Journal  Volume 108, Issue 5, Pages 1238-1247 (March 2015) DOI: 10.1016/j.bpj.2015.01.023 Copyright © 2015 Biophysical Society Terms and Conditions

Figure 1 Schematic representation of (a) an A-RNA helix as represented by the model and (b) the attractive interactions in oxRNA (35). To see this figure in color, go online. Biophysical Journal 2015 108, 1238-1247DOI: (10.1016/j.bpj.2015.01.023) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 2 Schematic representation of the different stages of a strand displacement reaction as represented by oxRNA for a 4-nucleotide-long toehold at the 3′ end of the substrate. (a) The invading strand (blue) attaches to the toehold of the substrate (red). (b) The invading strand is fully bound to the toehold. (c) The invading strand displaces bonds between the incumbent (green) strand and the substrate. (d) The incumbent strand loses all bonds with the substrate. To see this figure in color, go online. Biophysical Journal 2015 108, 1238-1247DOI: (10.1016/j.bpj.2015.01.023) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 3 (a) A 14-base substrate strand (red) with a 14-base invader strand (blue) attached at its 3′ 4-base toehold and a 10-base incumbent strand (green). The stacking interaction at the branch migration junction (indicated by the black arrow) is broken, making it easier for the single-stranded overhangs of the strands to avoid each other. (b) Free-energy profile as a function of the number of bonds between the invading strand and the substrate for a 3′ (blue dots) and 5′ (red crosses) toehold at 37°C. The free energy has been set to 0 when the invading strand has four bonds with the substrate. The 5′ toehold has a larger free energy gain upon forming the first 4 bonds than the 3′ toehold does. To see this figure in color, go online. Biophysical Journal 2015 108, 1238-1247DOI: (10.1016/j.bpj.2015.01.023) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 4 (a) An invading strand (green) at a 3′ toehold has no cross-stacking interaction with the substrate (red) strand at the junction. (b) An invading strand (blue) attached to a 5′ toehold. (Black line) The 3′ cross-stacking interaction at the junction of the invading and incumbent strand is indicated schematically. To see this figure in color, go online. Biophysical Journal 2015 108, 1238-1247DOI: (10.1016/j.bpj.2015.01.023) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 5 Semilogarithmic plot of mean rates of the strand displacement reaction as a function of toehold length for toeholds at the 3′ end (dashed line) and at the 5′ end (solid line) of the substrate strand. The error bars show the maximum and minimum rate obtained from all the simulations for a given length of toehold. The rates are normalized with respect to the mean rate for a 1-nucleotide toehold at the 3′ end. To see this figure in color, go online. Biophysical Journal 2015 108, 1238-1247DOI: (10.1016/j.bpj.2015.01.023) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 6 Semilogarithmic plot of mean rates of the strand displacement reaction and yields of attachment to the toehold for a 3-nucleotide toehold at the 3′ end as a function of temperature. The error bars show the maximum and minimum rate obtained from all the simulations for a given temperature. The rates and yields are normalized with respect to their values at 37°C. To see this figure in color, go online. Biophysical Journal 2015 108, 1238-1247DOI: (10.1016/j.bpj.2015.01.023) Copyright © 2015 Biophysical Society Terms and Conditions