Volume 15, Issue 12, Pages (June 2016)

Slides:



Advertisements
Similar presentations
Date of download: 7/8/2016 Copyright © 2016 SPIE. All rights reserved. ChR2-EYFP expression in transgenic mouse brain slices. (a) Fluorescent microscope.
Advertisements

Volume 23, Issue 18, Pages (September 2013)
Volume 79, Issue 6, Pages (September 2013)
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
Volume 7, Issue 1, Pages (April 2014)
Volume 9, Issue 5, Pages (December 2014)
Sharif Taha, Michael P. Stryker  Neuron 
Volume 7, Issue 1, Pages (April 2014)
Volume 52, Issue 2, Pages (October 2006)
Sangyu Xu, Gishnu Das, Emily Hueske, Susumu Tonegawa  Current Biology 
Volume 87, Issue 5, Pages (September 2015)
Intracranial Tumor Cell Migration and the Development of Multiple Brain Metastases in Malignant Melanoma  Trude G. Simonsen, Jon-Vidar Gaustad, Einar.
Volume 20, Issue 1, Pages (July 2017)
Molecular fMRI of Serotonin Transport
Volume 75, Issue 4, Pages (August 2012)
Volume 24, Issue 10, Pages e5 (September 2018)
Volume 82, Issue 6, Pages (June 2014)
Volume 5, Issue 3, Pages (November 2013)
Volume 18, Issue 11, Pages (March 2017)
Volume 85, Issue 2, Pages (January 2015)
Volume 27, Issue 16, Pages e3 (August 2017)
Euiseok J. Kim, Matthew W. Jacobs, Tony Ito-Cole, Edward M. Callaway 
Volume 83, Issue 6, Pages (September 2014)
Volume 8, Issue 4, Pages (August 2014)
Volume 24, Issue 2, Pages (July 2018)
Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers
Volume 13, Issue 9, Pages (December 2015)
Jonathan J. Nassi, David C. Lyon, Edward M. Callaway  Neuron 
Inhibitory Interplay between Orexin Neurons and Eating
Lineage Tracing Using Cux2-Cre and Cux2-CreERT2 Mice
Volume 90, Issue 5, Pages (June 2016)
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
Volume 16, Issue 2, Pages (July 2016)
Rosanna P. Sammons, Claudia Clopath, Samuel J. Barnes  Cell Reports 
Volume 91, Issue 6, Pages (September 2016)
Molecular Therapy - Methods & Clinical Development
Volume 16, Issue 2, Pages (July 2016)
Volume 13, Issue 4, Pages (April 2011)
Volume 21, Issue 3, Pages (October 2017)
Corey Baimel, Benjamin K. Lau, Min Qiao, Stephanie L. Borgland 
Parvalbumin-Expressing GABAergic Neurons in Mouse Barrel Cortex Contribute to Gating a Goal-Directed Sensorimotor Transformation  Shankar Sachidhanandam,
Niccolò Zampieri, Thomas M. Jessell, Andrew J. Murray  Neuron 
Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition
Volume 4, Issue 6, Pages (June 2015)
Volume 17, Issue 11, Pages (June 2007)
Volume 93, Issue 4, Pages e6 (February 2017)
Cocaine Inhibition of Synaptic Transmission in the Ventral Pallidum Is Pathway-Specific and Mediated by Serotonin  Aya Matsui, Veronica A. Alvarez  Cell.
Rapid versus Delayed Stimulation of Feeding by the Endogenously Released AgRP Neuron Mediators GABA, NPY, and AgRP  Michael J. Krashes, Bhavik P. Shah,
Volume 15, Issue 12, Pages (June 2016)
Volume 74, Issue 3, Pages (May 2012)
A Hypothalamic Switch for REM and Non-REM Sleep
Volume 24, Issue 6, Pages (March 2014)
Volume 9, Issue 6, Pages (June 2009)
Giulia Quattrocolo, Gord Fishell, Timothy J. Petros  Cell Reports 
Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus  Li Zhou, Ming-Zhe Liu, Qing.
Volume 21, Issue 3, Pages (October 2017)
James H. Marshel, Takuma Mori, Kristina J. Nielsen, Edward M. Callaway 
Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System  Cédric G. Geoffroy, Brett J. Hilton, Wolfram.
Volume 24, Issue 4, Pages (February 2014)
Volume 11, Issue 11, Pages (June 2015)
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Volume 23, Issue 18, Pages (September 2013)
Identification of the mPOA as a downstream target of AGRP neurons.
Topographic organization of CA3 to CA1 projections revealed through monosynaptic rabies tracing by specifically targeting CA1 pyramidal cells along the.
Optogenetic analysis of mPFC neurons.
Volume 26, Issue 1, Pages e6 (January 2019)
Volume 21, Issue 11, Pages (December 2017)
Volume 28, Issue 8, Pages e4 (August 2019)
Volume 27, Issue 12, Pages R580-R586 (June 2017)
Volume 19, Issue 12, Pages (June 2017)
Presentation transcript:

Volume 15, Issue 12, Pages 2796-2808 (June 2016) Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area  Lauren Faget, Fumitaka Osakada, Jinyi Duan, Reed Ressler, Alexander B. Johnson, James A. Proudfoot, Ji Hoon Yoo, Edward M. Callaway, Thomas S. Hnasko  Cell Reports  Volume 15, Issue 12, Pages 2796-2808 (June 2016) DOI: 10.1016/j.celrep.2016.05.057 Copyright © 2016 The Author(s) Terms and Conditions

Cell Reports 2016 15, 2796-2808DOI: (10.1016/j.celrep.2016.05.057) Copyright © 2016 The Author(s) Terms and Conditions

Figure 1 Strategy for Cell-Type-Specific Transsynaptic Tracing using Modified Rabies Virus (A) Timeline of viral injections. (B) Schematic illustrating strategy to achieve cell-type-specific transsynaptic tracing. Expression of TVA receptors (green) and RbG-hBFP (blue nuclei) is Cre dependent. EnvA-Rb-ΔG-mCherry initially infects TVA-expressing cells and relies on RbG-hBFP expression for transsynaptic spread to afferent inputs. Cre-positive starter cells are defined as those expressing both RbG (BFP) and Rb (mCherry). (C) Native Rb-mCherry and RbG:BFP fluorescence in sagittal sections from Cre-expressing mouse lines. White boxes and higher-power images represent VTA. Scale bars represent 2.5 mm (left) and 250 μm (right). (D) Percentages of starter cells present within and outside of the VTA. (E) Unadjusted (raw) counts of the total number of input cells (±SEM). (F) Ratio of input cell counts to starter cell counts (±SEM). (G) Scatterplots of input cell counts and starter cell counts. Points represent individual animals, and lines represent linear regressions. See also Figures S1 and S2. Cell Reports 2016 15, 2796-2808DOI: (10.1016/j.celrep.2016.05.057) Copyright © 2016 The Author(s) Terms and Conditions

Figure 2 Localization of Starter Cells within VTA (A–D) Representative coronal images of starter cells contained within VTA. Native Rabies-mCherry fluorescence is shown in red. Immunolabeling was used to better visualize RbG-expressing cells that co-express the histone-bound FLAG-tagged BFP as shown in blue. Costaining to identify TH-expressing dopamine neurons (green). Arrows represent triple-labeled cells, i.e., starter cells that co-localize for TH. Scale bars represent 200 μm (top) and 50 μm (bottom). (E) Proportion of starter cells that label for TH across genotype (±SEM). (F) Cell counts of TH-negative and TH-positive starter cells for each of the four VGLUT2-Cre mice used in this study. Cell Reports 2016 15, 2796-2808DOI: (10.1016/j.celrep.2016.05.057) Copyright © 2016 The Author(s) Terms and Conditions

Figure 3 Inputs to Transmitter-Defined VTA Cells Normalized by Starter Cell Counts (A–G) Example coronal images showing Rb-mCherry+ (red) input cells to transmitter-defined VTA cells from select brain regions. Scatterplots: individual points represent animals and lines are linear regressions. ac, anterior commissure; PrL, prelimbic cortex; CPu, caudate putamen; AcbSh, nucleus accumbens shell; BST, bed nucleus of the stria terminalis; VP, ventral pallidum; MCPO, magnocellular preoptic nucleus; LPO, lateral preoptic area; MHb, medial habenular nucleus; LHb, lateral habenular nucleus; LH, lateral hypothalamus; PVH, paraventricular nucleus of the hypothalamus; DR, dorsal raphe nucleus; LDTg, laterodorsal tegmental nucleus; PB, parabrachial nucleus; LC, locus coeruleus; Aq, aqueduct; scp, superior cerebellar peduncle. Blue contrast represents DAPI (A–E) or background autofluorescence (F and G). Scale bars represent 500 μm (B, C, E, and F) and 250 μm (A, D, and G). (H) Histogram representing ratio of input cell numbers relative to starter cell counts for the three genetically defined VTA cell type across major brain areas (±SEM); ∗p < 0.05, ∗∗p < 0.01. Cell Reports 2016 15, 2796-2808DOI: (10.1016/j.celrep.2016.05.057) Copyright © 2016 The Author(s) Terms and Conditions

Figure 4 Inputs to Transmitter-Defined VTA Neurons Normalized to Total Inputs (A) Percentages of total inputs per major brain area across transmitter-defined cell types (±SEM). (B) Schematic of input weights by major brain area; areas of circles are proportional to fraction of total inputs coming from each brain area. (C) Percentages of total inputs per sub-area or region, with the top 25 inputs represented (±SEM). (D) Color-coded schematic of input weights by sub-area or region representing the percentages of total inputs per regions for each VTA cell type. Regions or sub-areas accounting for <1% of total input are not included in this representation. See Figure S3 for brain region key and Data S1 for detailed counts. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Cell Reports 2016 15, 2796-2808DOI: (10.1016/j.celrep.2016.05.057) Copyright © 2016 The Author(s) Terms and Conditions

Figure 5 Differential Analysis of Inputs to Transmitter-Defined VTA Cell Types Data normalized to total inputs and assessed by negative binomial models and the DESeq package. Analysis allowing for comprehensive pairwise comparisons is represented here as fold differences (on a log scale) in weighted inputs relative to the other VTA cell types (±SEM). For a detailed description, see Supplemental Experimental Procedures and Tables S1–S6. ∗p < 0.05. Cell Reports 2016 15, 2796-2808DOI: (10.1016/j.celrep.2016.05.057) Copyright © 2016 The Author(s) Terms and Conditions

Figure 6 Immunohistochemical Characterization of Afferent Inputs to VTA from Ventral Pallidum and LH (A) Quantification of pallidal parvalbumin (PV)-expressing afferents to transmitter-defined VTA cell types. Histogram represents the ratio of Rb-mCherry+ cells immunolabeled with anti-PV in the ventral pallidum (VP) relative to the number of starter cells (±SEM). (B) Quantification of hypothalamic orexin-expressing and melanocortin concentrating hormone (MCH)-expressing afferents to VTA cell types. Histograms represent the ratio of Rb-mCherry+ cells immunolabeled with anti-orexin (top) or anti-MCH (bottom) in the lateral hypothalamus (LH) relative to the number of starter cells (±SEM). Points in scatterplots represent individual animals and lines are linear regressions. Example coronal images for each genotype show Rb-mCherry expression (red) along with immunostaining (green) against PV, orexin, or MCH. Arrows represent co-localizing cells. Scale bar represents 200 μm. See also Figure S4. Cell Reports 2016 15, 2796-2808DOI: (10.1016/j.celrep.2016.05.057) Copyright © 2016 The Author(s) Terms and Conditions