10-4: Inscribed Angles.

Slides:



Advertisements
Similar presentations
By: Justin Mitchell and Daniel Harrast. Inscribed angle- an angle whose vertex is on a circle and whose sides contain chords of the circle. Intercepted.
Advertisements

10.3 Inscribed Angles Goal 1: Use inscribed angles to solve problems Goal 2: Use properties of inscribed polygons CAS 4, 7, 16, 21.
Inscribed Angles Section 10.5.
12.3 Inscribed Angles. Vocab: inscribed angle - an angle whose vertex is on a circle and whose sides are chords
6.4 Use Inscribed Angles and Polygons Quiz: Friday.
10.4 Use Inscribed Angles and Polygons. Inscribed Angles = ½ the Measure of the Intercepted Arc 90 ̊ 45 ̊
11-3 Inscribed Angles Objective: To find the measure of an inscribed angle.
10.4.  Inscribed Angle: an angle that has a vertex on the circle. The sides of the angles are chords.  Intercepted Arc: the arc that is contained in.
Section 10.3 – Inscribed Angles
Chapter 12.3 Inscribed Angles
Geometry Section 10-4 Use Inscribed Angles and Polygons.
Warm-Up Find the area of the shaded region. 10m 140°
Section 9.5 INSCRIBED ANGLES. Inscribed Angle What does inscribe mean? An inscribed angle is an angle whose vertex is on a circle and whose sides contain.
Chapter 10.4 Notes: Use Inscribed Angles and Polygons
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
11-3 Inscribed Angles Learning Target: I can solve problems using inscribed angles. Goal 2.03.
Warm Up Week 1. Section 10.3 Day 1 I will use inscribed angles to solve problems. Inscribed Angles An angle whose vertex is on a circle and whose.
6.3 – 6.4 Properties of Chords and Inscribed Angles.
12.3 Inscribed Angles An angle whose vertex is on the circle and whose sides are chords of the circle is an inscribed angle. An arc with endpoints on the.
10.3 Inscribed Angles. Definitions Inscribed Angle – An angle whose vertex is on a circle and whose sides contain chords of the circle Intercepted Arc.
Section 10.3 Inscribed Angles. Inscribed Angle An angle whose vertex is on a circle and whose sides contain chords of the circle Inscribed Angle.
Inscribed Angles Inscribed Angles – An angle that has its vertex on the circle and its sides contained in chords of the circle. Intercepted – An angle.
Inscribed Angles Section 9-5. Inscribed Angles An angle whose vertex is on a circle and whose sides contain chords of the circle.
11-2 Chords & Arcs 11-3 Inscribed Angles
Inscribed Angles Using Inscribed Angles An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.
Sect Inscribed Angles Geometry Honors. What and Why What? – Find the measure of inscribed angles and the arcs they intercept. Why? – To use the.
9-4 Inscribed Angles Objectives: To recognize and find measures of inscribed angles. To find properties of inscribed angles.
Inscribed angles [11.3] Objectives Students will be able to… Find the measure of an inscribed angle Find the measures of an angle formed by a tangent and.
Inscribed Angle: An angle whose vertex is on the circle and whose sides are chords of the circle INTERCEPTED ARC INSCRIBED ANGLE.
11.3: INSCRIBED ANGLES Objectives: Students will be able to… Apply the relationship between an inscribed angle and the arc it intercepts Find the measures.
Inscribed Angles Section inscribed angle – an angle whose vertex is on the circle and whose sides each contain chords of the circle. ADC is an inscribed.
Inscribed Angles. Inscribed Angles and Central Angles A Central angle has a vertex that lies in the center of a circle. A n inscribed angle has a vertex.
Geometry 9.5 Inscribed Angles. Inscribed Angles The vertex is on the circle The sides of the angle: AAre chords of the circle IIntercept an arc on.
Inscribed Angles Inscribed angles have a vertex on the circle and sides contain chords of the circle.
Section 9-5 Inscribed Angles. Inscribed angles An angle whose vertex is on a circle and whose sides contain chords of the circle. A B C D are inscribed.
Lesson 7.4. Conjectures Geo Sketchpad C-68 The measure of an inscribed angle in a circle is half the measure of the arc it intercepts.
Geometry 10.4 Inscribed Angles. Vocabulary Inscribed Angle Intercepted Arc B A C.
Objective: Measures of Inscribed Angles & Inscribed Polygons. (3.12.3) Section 10.4.
Warm-up Find the measure of each arc.. Inscribed Angles.
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
Inscribed Angles December 3, What is an inscribed angle? An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords.
10.3 Inscribed Angles Intercepted arc. Definition of Inscribed Angles An Inscribed angle is an angle with its vertex on the circle.
Section 10-3 Inscribed Angles. Inscribed angles An angle whose vertex is on a circle and whose sides contain chords of the circle. A B D is an inscribed.
Thm Summary
Circles.
Geometry 11-4 Inscribed Angles
Do Now.
Inscribed Angles Geometry 11-3.
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
Section 9-5: Inscribed Angles & Corollaries
12-3 Inscribed Angles.
Warm up 30 80 100 180 100 260.
Warm up 30 80 100 180 100 260.
Inscribed Angles Inscribed Angle: its vertex is on the circle and its sides are chords. The arc that is inside the angle is known as the intercepted arc.
Inscribed Angles Notes and Examples.
11-3 Inscribed Angles Theorems: Inscribed Angle Theorem, 11-10
Geometry 9.5 Inscribed Angles.
Warm up 30 80 100 180 100 260.
Warm up.
Section 10.3 – Inscribed Angles
Warm up 30 80 100 180 100 260.
Chapter 9 Section-5 Segments Angles &.
12.3 Inscribed Angles.
9-5 Inscribed Angles.
_____________: An angle whose vertex is on the circle and whose sides are chords of the circle
Circles and inscribed angles
Section 10.4 Use Inscribed Angles And Polygons Standard:
Inscribed Angles.
10.4 Inscribed Angles.
Warm up #1 1/6 & 1/9 30 80 100 180 100 260.
Presentation transcript:

10-4: Inscribed Angles

Inscribed angles: An the vertex of an inscribed angle is located on a circle. The arc formed by the legs of the angle is called the intercepted arc.

Alligator Theorems If the alligator is in the center of the circle, he can eat all of the birds. m<B=mAC If the alligator is on the edge of the circle, he can only eat half of the birds. m<E= ½ mDF

Find the measure of each indicated arc. EX 1: Find mFH EX2: Find mJK EX 3: Find mMO

Find the measure of each angle. mAB=140 mBC=100 mAD=mDC

Theorems: If two inscribed angles are congruent, then their intercepted arcs are_____________. If an inscribed angle intercepts a semicircle, then it is a ___________ angle. If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

Find x and y

FH=20 and is a diameter of circle E. Find m<F Find m<G Find m<H Find GH Find FG

Assignment Regular: p. 549 + 550; 8, 10, 13-16, 22-27 Honors: p. 549 + 550; 8, 10, 13-16, 22-29