Fig. 4 Steady-state difference SAXS, modeling of hydration layer, FFW flexibility in MD simulations, and active-site hydrogen bonding network. Steady-state.

Slides:



Advertisements
Similar presentations
Fig. 4 Ballistic simulation of BP FETs.
Advertisements

Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 2 CL-DMD modeling of FKBP.
Fig. 4 INS spectra of different human bones from the Roman period [humerus, ulna, femur, and fibula from the same skeleton, Guidonia-Montecelio, Italy.
Fig. 3 Calculated IR spectra for the oxo complex and chain complex.
Fig. 2 CFD results. CFD results. Results of CFD simulations in horizontal (left column) and vertical (right column) cross-sections. All models oriented.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 6 Covalent inhibition of tuberculosis target MptpB.
Fig. 3 Electron PSD in various regions.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
HT synthesis of boronic acids using the building block approach
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Influence of the Roadmap Epigenomics Program on the field of epigenomics research. Influence of the Roadmap Epigenomics Program on the field of.
Fig. 2 Reference-fixing experiment, results.
Fig. 4 Structural details of tRNA binding to Elp123.
Fig. 3 Glucose- and structure-dependent insulin release.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 2 TRXSS data. TRXSS data. TRXSS data covering delay times from 10 ns to 10 ms for wild-type DmCry (A), for the DmCry(H378A) mutant (B), and for XlPho.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 5 Structural photocycle for DmCry.
FTIR-ATR spectra of Neolithic faunal bones (Mora Cavorso cave, Italy)
Fig. 1 Bioinspired design of AAD for promoting wound contraction.
Characteristics of the topology-optimized actuator and long-term tests
Fig. 1 Distribution of total and fake news shares.
Spin diffusion buildup from bound water to amide protons in NaK2K
Fig. 1 The illustration of discontinuous hydrogen bonding chains in FJU-23-H2O. The illustration of discontinuous hydrogen bonding chains in FJU-23-H2O.
Fig. 2 2D QWs of different propagation lengths.
Fig. 3 Alch-MC design and self-assembly of a previously unreported novel crystal structure with no known atomic equivalent. Alch-MC design and self-assembly.
Fig. 2 Hydrogel stress relaxation regulates cell cycle progression from the G1 phase to the S phase. Hydrogel stress relaxation regulates cell cycle progression.
Fig. 1 Map of the study area including the northwestern end of the Hawaiian Ridge and the southern portion of the ESC. Map of the study area including.
Fig. 1 Schematic illustration and atomic-scale rendering of a silica AFM tip sliding up and down a single-layer graphene step edge on an atomically flat.
Fig. 4 EUV TG signal from Si.
Fig. 4 DFT ωB97x/def2-TZVPP atomic charges on the sulfur atom of substituted thioaldehyde and AIMNet prediction with a different number of iterative passes.
The changes in the water intensity of hydraulic fracturing with time
Fig. 3 Load dependence of friction force and corresponding COF.
Fig. 3 Water state in the h-LAH.
Fig. 2 Assignment of back-exchanged deuterated NaK2K.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 5 Topology structure and strategy for the bottom-up synthesis of structurally uniform carboncones[1,m]. Topology structure and strategy for the bottom-up.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 3 GIWAXS pattern of perovskite films with varied ligands.
Fig. 4 Praying Prophet by Lorenzo Monaco: Mapping lake pigments and associated substrate. Praying Prophet by Lorenzo Monaco: Mapping lake pigments and.
Fig. 1 Cross-sectional images of He-implanted V/Cu/V samples.
Fig. 4 Evolution of fraction of sickled RBCs under hypoxia.
Fig. 2 Magnetic properties of FGT/Pt bilayer.
Contrast agent uptake for the four different groups of MMA mice
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 1 Gradients of species richness and predicted turnover through extinction and redistribution. Gradients of species richness and predicted turnover.
Fig. 4 Relationships between light and economic parameters.
Fig. 4 Reactive MD simulation showing the origins of chemical and physical effects on friction. Reactive MD simulation showing the origins of chemical.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Schematic of the proposed brain-controlled assistive hearing device
Fig. 4 Conformational dynamics of the activation loop of PKA-CWT and PKA-CL205R upon binding substrate. Conformational dynamics of the activation loop.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 Phase diagram showing significant order parameters ∣pk∣ versus T and wc. Phase diagram showing significant order parameters ∣pk∣ versus T and wc.
Fig. 2 Mean field results. Mean field results. (A) Solutions P(x) to Eq. 4 for a range of T and wc = (B) Modulus ∣pk∣ of order parameters versus.
Fig. 3 Electronic conductivity studies.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 3 Spatial distribution of the shoot density (high densities are represented in dark green and low ones in bright yellow) in a simulation of a P. oceanica.
Presentation transcript:

Fig. 4 Steady-state difference SAXS, modeling of hydration layer, FFW flexibility in MD simulations, and active-site hydrogen bonding network. Steady-state difference SAXS, modeling of hydration layer, FFW flexibility in MD simulations, and active-site hydrogen bonding network. (A) Difference scattering from a steady-state SAXS measurement compared to DmCryε. Note that it is the regularized difference intensity that is shown for the SAXS measurement. Predicted difference scattering for DmCry crystal structure (PDB ID: 4GU5) by only varying the hydration layer contrast by the equivalent of a few water molecules (B) and the corresponding change in P(r) (C). Simulations with the oxidized chromophore parameters display overall lower FFW RMSD compared to simulations with the reduced chromophore parameters (D and E). Arrows indicate shift and widening of the RMSD distribution when going from an oxidized to reduced chromophore. When the chromophore is oxidized, H378 preferentially forms a hydrogen bond with W536 (F), but when the FAD becomes reduced, H378 preferentially binds to the FAD (G). arb., arbitrary unit. Oskar Berntsson et al. Sci Adv 2019;5:eaaw1531 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).