Volume 113, Issue 12, Pages (December 2017)

Slides:



Advertisements
Similar presentations
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Advertisements

Volume 15, Issue 3, Pages (April 2016)
Mechanical Stability and Reversible Fracture of Vault Particles
Volume 110, Issue 4, Pages (February 2016)
Force-Clamp Analysis Techniques Give Highest Rank to Stretched Exponential Unfolding Kinetics in Ubiquitin  Herbert Lannon, Eric Vanden-Eijnden, J. Brujic 
Benoit Tesson, Michael I. Latz  Biophysical Journal 
Mechanotransmission and Mechanosensing of Human alpha-Actinin 1
Volume 113, Issue 9, Pages (November 2017)
Volume 112, Issue 7, Pages (April 2017)
Volume 110, Issue 10, Pages (May 2016)
Volume 109, Issue 2, Pages (July 2015)
Molecular Basis of Fibrin Clot Elasticity
Volume 89, Issue 5, Pages (November 2005)
Mechanical Anisotropy of Ankyrin Repeats
F. Benedetti, C. Micheletti, G. Bussi, S.K. Sekatskii, G. Dietler 
Volume 104, Issue 1, Pages (January 2013)
Shohei Fujita, Takuya Matsuo, Masahiro Ishiura, Masahide Kikkawa 
Local Viscoelastic Properties of Live Cells Investigated Using Dynamic and Quasi-Static Atomic Force Microscopy Methods  Alexander Cartagena, Arvind Raman 
Susanne Karsch, Deqing Kong, Jörg Großhans, Andreas Janshoff 
William Y.C. Huang, Han-Kuei Chiang, Jay T. Groves  Biophysical Journal 
Maxim E. Dokukin, Nataliia V. Guz, Igor Sokolov  Biophysical Journal 
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 111, Issue 2, Pages (July 2016)
On the Origin of Kinesin Limping
Volume 96, Issue 9, Pages (May 2009)
Serapion Pyrpassopoulos, Henry Shuman, E. Michael Ostap 
Theoretical and Computational Investigation of Flagellin Translocation and Bacterial Flagellum Growth  David E. Tanner, Wen Ma, Zhongzhou Chen, Klaus.
A Structural Perspective on the Dynamics of Kinesin Motors
Jérôme Lang, Amandine Maréchal, Manon Couture, Jérôme Santolini 
Volume 98, Issue 11, Pages (June 2010)
Markita P. Landry, Patrick M. McCall, Zhi Qi, Yann R. Chemla 
Volume 96, Issue 2, Pages (January 2009)
Volume 107, Issue 6, Pages (September 2014)
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
Volume 17, Issue 12, Pages (December 2009)
Emergent Global Contractile Force in Cardiac Tissues
Volume 75, Issue 2, Pages (August 1998)
Volume 20, Issue 12, Pages (December 2012)
Stationary Gating of GluN1/GluN2B Receptors in Intact Membrane Patches
Volume 104, Issue 1, Pages (January 2013)
Real-Time Nanopore-Based Recognition of Protein Translocation Success
Volume 107, Issue 8, Pages (October 2014)
Teuta Pilizota, Joshua W. Shaevitz  Biophysical Journal 
Quantifying Instrumental Artifacts in Folding Kinetics Measured by Single-Molecule Force Spectroscopy  Krishna Neupane, Michael T. Woodside  Biophysical.
Volume 26, Issue 1, Pages e4 (January 2018)
Untangling the Influence of a Protein Knot on Folding
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Dynamics of Active Semiflexible Polymers
Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus- Based Nanocoating  Alejandro Valbuena, Mauricio G. Mateu  Biophysical.
Michael Schlierf, Felix Berkemeier, Matthias Rief  Biophysical Journal 
Jamie L. Maciaszek, Biree Andemariam, Greg Huber, George Lykotrafitis 
Volume 101, Issue 8, Pages (October 2011)
Volume 104, Issue 9, Pages (May 2013)
Volume 85, Issue 5, Pages (November 2003)
J.P. Junker, K. Hell, M. Schlierf, W. Neupert, M. Rief 
Single-Molecule Force Spectroscopy of Cartilage Aggrecan Self-Adhesion
Bending and Puncturing the Influenza Lipid Envelope
Volume 113, Issue 3, Pages (August 2017)
Volume 110, Issue 1, Pages (January 2016)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 115, Issue 12, Pages (December 2018)
Volume 98, Issue 9, Pages (May 2010)
Subpiconewton Dynamic Force Spectroscopy Using Magnetic Tweezers
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Ricksen S. Winardhi, Qingnan Tang, Jin Chen, Mingxi Yao, Jie Yan 
Volume 114, Issue 6, Pages (March 2018)
Ashley R. Carter, Yeonee Seol, Thomas T. Perkins  Biophysical Journal 
Kinetic Folding Mechanism of Erythropoietin
Zackary N. Scholl, Weitao Yang, Piotr E. Marszalek  Biophysical Journal 
Presentation transcript:

Volume 113, Issue 12, Pages 2595-2600 (December 2017) Force Spectroscopy with 9-μs Resolution and Sub-pN Stability by Tailoring AFM Cantilever Geometry  Devin T. Edwards, Jaevyn K. Faulk, Marc-André LeBlanc, Thomas T. Perkins  Biophysical Journal  Volume 113, Issue 12, Pages 2595-2600 (December 2017) DOI: 10.1016/j.bpj.2017.10.023 Copyright © 2017 Terms and Conditions

Figure 1 Improved performance of modified AFM cantilevers. (A) Schematic of the assay showing a polyprotein consisting of four domains of NuG2 (red) and one domain of α3D (blue) being unfolded with a Warhammer cantilever. (B–E) Images of cantilevers prior to gold removal: an unmodified BioLever Mini (B), a standard Mod Mini (C), a Long-cut Mod Mini (D), and a Warhammer (E). The cantilever’s spring constant is noted below each image. (F) Comparison of the force PSD for each cantilever using the color code denoted in (B)–(E). (G) Force precision over a given averaging time, technically the Allan deviation (17). At the very shortest times, the motion of the cantilever becomes correlated, distorting the force precision calculation. This region of the curve is de-emphasized using a dashed line. Biophysical Journal 2017 113, 2595-2600DOI: (10.1016/j.bpj.2017.10.023) Copyright © 2017 Terms and Conditions

Figure 2 Temporal resolution of different cantilever geometries. (A) Scanning electron microscopy images of the modified cantilevers. (B) Force-versus-time traces show unfolding of the (NuG2)2-α3D-(NuG2)2 construct. In this assay, the construct was stretched until the α3D and three NuG2 domains unfolded. The stage was further retracted until the polyprotein was held at ∼80 pN. The stage retraction was then stopped and the last folded NuG2 domain unfolded. Data smoothed to 2 kHz. (C) High-bandwidth force-versus-time traces from (B) showing the unfolding of the fourth NuG2 domain at v = 0 nm/s. Time constants determined from exponential fits. Data acquired at 500 kHz. (D) Autocorrelation of the cantilever motion after the final NuG2 domain unfolded but was still attached to the polyprotein. Time constants shown were determined from the 1/e point of the autocorrelation (dashed line). (E) Force PSDs of the 500-kHz data after unfolding of the final NuG2 domain. Time constants estimated from τ ≈ Q/(πƒc) based on the characteristic frequency, ƒc. Biophysical Journal 2017 113, 2595-2600DOI: (10.1016/j.bpj.2017.10.023) Copyright © 2017 Terms and Conditions

Figure 3 Improved AFM-based SMFS studies of calmodulin unfolding when using a Warhammer cantilever. (A) Force-extension curves show the unfolding of a polyprotein containing calmodulin and four repeats of NuG2 at v = 100 nm/s. Trace color coding indicates fully folded calmodulin (blue), partial unfolding of the N-terminal domain (green), followed by the full unfolding of the C- and N-terminal domains (orange and purple, respectively). The unfolding of the NuG2 domains at higher force is also color coded purple. Dashed lines represent worm-like chain fits. (Inset) Calmodulin unfolding at low force. (B) Three force-versus-time traces at v = 100 nm/s highlight three-step unfolding of calmodulin. (C) Force-extension curves comparing the unfolding of calmodulin bound and unbound to MLCK at v = 400 nm/s (red and blue, respectively). Dark traces filtered to 250 Hz. Biophysical Journal 2017 113, 2595-2600DOI: (10.1016/j.bpj.2017.10.023) Copyright © 2017 Terms and Conditions