Xingwen Yu, Arumugam Manthiram

Slides:



Advertisements
Similar presentations
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Composite Nanofiber Membrane for Lithium-Ion Batteries Prepared by Electrostatic.
Advertisements

Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents  Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers,
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Volume 1, Issue 2, Pages (October 2017)
Volume 2, Issue 2, Pages (February 2018)
Volume 1, Issue 2, Pages (October 2017)
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Volume 3, Issue 2, Pages (August 2017)
Prussian Blue Analogs for Rechargeable Batteries
On the Electrolytic Stability of Iron-Nickel Oxides
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu2ZnSnS4  Jie Ge, Yanfa Yan  iScience 
4.0 V Aqueous Li-Ion Batteries
Volume 3, Issue 5, Pages (November 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 2, Issue 2, Pages (February 2018)
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Mesoporous Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage  Wei Zhang, Lianhai Zu, Biao Kong, Bingjie Chen, Haili.
Volume 26, Issue 7, Pages (April 2016)
Electrochemical Energy Storage with Mediator-Ion Solid Electrolytes
Wei Wen, Jin-Ming Wu, Yin-Zhu Jiang, Lu-Lu Lai, Jian Song  Chem 
Volume 2, Issue 1, Pages (January 2018)
Aliza Khurram, Mingfu He, Betar M. Gallant  Joule 
A Flexible Supercapacitor with High True Performance
Cycling Li-O2 batteries via LiOH formation and decomposition
Volume 3, Issue 5, Pages (November 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 3, Pages (November 2017)
High-Energy Li Metal Battery with Lithiated Host
Volume 3, Issue 6, Pages (December 2017)
Volume 4, Issue 2, Pages (February 2018)
Volume 2, Issue 1, Pages (January 2018)
Volume 4, Issue 4, Pages (April 2018)
Interphase Engineering Enabled All-Ceramic Lithium Battery
Volume 9, Pages (November 2018)
Volume 10, Pages (December 2018)
Photoswitchable Membranes Based on
Volume 1, Issue 2, Pages (October 2017)
Volume 4, Issue 2, Pages (February 2018)
Volume 1, Issue 2, Pages (August 2016)
Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
Volume 3, Issue 4, Pages (October 2017)
Chao Luo, Xiulin Fan, Zhaohui Ma, Tao Gao, Chunsheng Wang  Chem 
Volume 3, Issue 5, Pages (November 2017)
Reactivity-Guided Interface Design in Na Metal Solid-State Batteries
Volume 1, Issue 3, Pages (November 2017)
Volume 2, Issue 11, Pages (November 2018)
Yolk-Shell Architecture with Precision Expansion Void Control for Lithium Ion Batteries  Runwei Mo, David Rooney, Kening Sun  iScience 
Jiarui He, Yuanfu Chen, Arumugam Manthiram
Volume 3, Issue 1, Pages (July 2017)
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
Volume 12, Pages (February 2019)
Volume 2, Issue 4, Pages (April 2018)
Volume 3, Issue 1, Pages (July 2017)
Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7%  Sisi Xiang, Weiping Li, Ya Wei, Jiaming Liu, Huicong Liu,
Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries  Li-Na.
Sawanta S. Mali, Jyoti V. Patil, Hyungjin Kim, Chang Kook Hong
Volume 19, Pages (September 2019)
Multifunctional Bilayer Nanocomposite Guided Bone Regeneration Membrane  Kai-Run Zhang, Huai-Ling Gao, Xiao-Feng Pan, Pu Zhou, Xin Xing, Rui Xu, Zhao Pan,
Cycling Li-O2 batteries via LiOH formation and decomposition
Fig. 2 Stabilizing the lithium-electrolyte interface.
Anode-Electrolyte Interfaces in Secondary Magnesium Batteries
Fig. 3 Performance of the solid wire supercapacitors of 3D graphene-CNT fiber for energy storage. Performance of the solid wire supercapacitors of 3D graphene-CNT.
Fig. 2 Design and characterization of rGO-Na anode.
Presentation transcript:

Xingwen Yu, Arumugam Manthiram Sodium-Sulfur Batteries with a Polymer-Coated NASICON-type Sodium-Ion Solid Electrolyte  Xingwen Yu, Arumugam Manthiram  Matter  DOI: 10.1016/j.matt.2019.03.008 Copyright © 2019 Elsevier Inc. Terms and Conditions

Matter DOI: (10.1016/j.matt.2019.03.008) Copyright © 2019 Elsevier Inc. Terms and Conditions

Figure 1 Characterization of the Na3Zr2Si2PO12 Solid Electrolyte and the PIN Polymer (A) Illustration of the NASICON structure of Na3Zr2Si2PO12 material. (B) XRD pattern of the Na3Zr2Si2PO12 membrane (top) and the reference pattern of the Na3Zr2Si2PO12 compound (bottom). (C) SEM image of the Na3Zr2Si2PO12 membrane. (D) Molecular structure of a PIN. (E) 1H-NMR spectrum of the PIN polymer. The labels correspond to the polymer structure in (D). (F) FTIR spectrum of the PIN material. Matter DOI: (10.1016/j.matt.2019.03.008) Copyright © 2019 Elsevier Inc. Terms and Conditions

Figure 2 Characterization of the PIN-Coated Na3Zr2Si2PO12 Membrane (A) XRD pattern of the PIN material (top) and a PIN-coated Na3Zr2Si2PO12 pellet (bottom). (B) SEM image of the surface of a PIN-coated Na3Zr2Si2PO12 pellet. (C) SEM image of the cross-section of a PIN-coated Na3Zr2Si2PO12 membrane. Matter DOI: (10.1016/j.matt.2019.03.008) Copyright © 2019 Elsevier Inc. Terms and Conditions

Figure 3 Electrochemical Performances of the Na ǁ Na3Zr2Si2PO12 ǁ CNF/S and the Na ǁ PIN-Na3Zr2Si2PO12 ǁ CNF/S Cells (A) Charge-discharge profile of a Na ǁ Na3Zr2Si2PO12 ǁ CNF/S cell at the first few cycles. (B) Charge-discharge profile of a Na ǁ PIN-Na3Zr2Si2PO12 ǁ CNF/S cell at the first few cycles. (C) CV curves of a Na ǁ PIN-Na3Zr2Si2PO12 ǁ CNF/S cell at a scan rate of 0.1 mV s−1. (D) Charge-discharge curves of Na ǁ PIN-Na3Zr2Si2PO12 ǁ CNF/S cells at various C rates. (E) Specific discharge capacities and Coulombic efficiencies versus cycling number of a Na ǁ PIN-Na3Zr2Si2PO12 ǁ CNF/S cell and a Na ǁ Celgard ǁ CNF/S cell at a cycling rate of C/5. Matter DOI: (10.1016/j.matt.2019.03.008) Copyright © 2019 Elsevier Inc. Terms and Conditions

Figure 4 XPS Regional Spectra of Fresh (Top) and Cycled (Bottom) Na3Zr2Si2PO12 Membranes The cycled membrane was taken from a Na ǁ PIN-Na3Zr2Si2PO12 ǁ CNF/S cell after 100 cycles. (A) Zr 3d spectrum, (B) Si 2p spectrum, (C) P 2p spectrum. Matter DOI: (10.1016/j.matt.2019.03.008) Copyright © 2019 Elsevier Inc. Terms and Conditions

Figure 5 Characterization of the Cycled Na3Zr2Si2PO12 Membrane (A) XPS survey spectrum of the cycled Na3Zr2Si2PO12 membrane. (B) XPS S 2p spectrum of the cycled Na3Zr2Si2PO12 membrane. (C) EDS spectrum of the cycled Na3Zr2Si2PO12 membrane. (D) SEM image of the cycled Na3Zr2Si2PO12 membrane. (E–I) Elemental mappings obtained with EDS of the cycled Na3Zr2Si2PO12 membrane in the area of (D). (E) Na, (F) Zr, (G) Si, (H) P, (I) S. Matter DOI: (10.1016/j.matt.2019.03.008) Copyright © 2019 Elsevier Inc. Terms and Conditions