Multiresponsiveness capabilities and performance of the soft actuators

Slides:



Advertisements
Similar presentations
Fig. 4 3D reconfiguration of liquid metals for electronics.
Advertisements

Fig. 5 MicroLED array with 3D liquid metal interconnects.
Fig. 2 Transport properties of a BP transistor at low temperature.
Fig. 2 Reconfiguration of liquid metals into 3D structures.
Fig. 3 The electrical contact of direct-printed and reconfigured liquid metals. The electrical contact of direct-printed and reconfigured liquid metals.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 4 INS spectra of different human bones from the Roman period [humerus, ulna, femur, and fibula from the same skeleton, Guidonia-Montecelio, Italy.
Fig. 3 Vibrational spectra of human bones from the Copper Age (Scoglietto cave, Italy). Vibrational spectra of human bones from the Copper Age (Scoglietto.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 3 Electron PSD in various regions.
Fig. 4 Complete separation of water and solute after stable and efficient solar evaporation. Complete separation of water and solute after stable and efficient.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
HT synthesis of boronic acids using the building block approach
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Influence of the Roadmap Epigenomics Program on the field of epigenomics research. Influence of the Roadmap Epigenomics Program on the field of.
Fig. 3 Glucose- and structure-dependent insulin release.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 1 The elaborate structure, components, and actuation mechanism of the MXene-cellulose–based actuator. The elaborate structure, components, and actuation.
Fig. 6 Multifunctional smart devices based on MXCC actuators.
Fig. 5 Structural photocycle for DmCry.
FTIR-ATR spectra of Neolithic faunal bones (Mora Cavorso cave, Italy)
Fig. 1 Distribution of total and fake news shares.
Fig. 5 Wearable closed-loop HMI.
Fig. 3 Characteristics of UV and temperature sensors.
Fig. 2 2D QWs of different propagation lengths.
Fig. 3 Magnetic scrolls. Magnetic scrolls. (A) Actuation of an IROGRAN scroll by moving the magnet toward the scroll and pulling the scroll open. The scroll.
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 3 Comparison of the reflective properties.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 5 Topology structure and strategy for the bottom-up synthesis of structurally uniform carboncones[1,m]. Topology structure and strategy for the bottom-up.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 3 GIWAXS pattern of perovskite films with varied ligands.
Fig. 4 Praying Prophet by Lorenzo Monaco: Mapping lake pigments and associated substrate. Praying Prophet by Lorenzo Monaco: Mapping lake pigments and.
Fig. 2 Magnetic properties of FGT/Pt bilayer.
Fig. 3 Characterization of the current-induced effective fields.
Contrast agent uptake for the four different groups of MMA mice
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Enzyme activity of PE-GA/Pt tuned by changing temperature or NIR light
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 1 Experimental strategy and elemental and morphological analysis of 3D/2D perovskite bilayer. Experimental strategy and elemental and morphological.
Fig. 2 Solution properties of S-PEDOT.
Fig. 5 Enzyme activity of PE-DNase I/Pt tuned by changing temperature or NIR light. Enzyme activity of PE-DNase I/Pt tuned by changing temperature or NIR.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 1 Structural and electrical properties of Bi2Se3/BaFe12O19.
Fig. 3 Electronic conductivity studies.
Fig. 5 Vegetation profiles.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 3 Device architecture, photovoltaic performance, and operational stability of 3D/2D bilayer PSCs. Device architecture, photovoltaic performance, and.
Fig. 4 Single-particle contact angle measurements.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 4 Effects of individual picosecond and microsecond pulses.
Fig. 5 Flickering RSCF display at night.
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 1 Completely derived from natural wood, nanowood with hierarchically aligned cellulose nanofibrils can be used as an anisotropic super thermal insulator.
Fig. 5 CD19-tPSMA(N9del) CAR T cell numbers in mouse and human.
Fig. 3 Temperature-dependent heat capacity of YbTM2Zn20.
Presentation transcript:

Fig. 2 Multiresponsiveness capabilities and performance of the soft actuators. Multiresponsiveness capabilities and performance of the soft actuators. (A) Humidity-responsive capability of the MXCC/PC bilayer-structured actuator [70% RH for AI and AIII, 10% RH for AII and AIV; the downward and upward directions refer to the active MXCC facing down (AI and AII) and up (AIII and AIV), respectively]. (B) Electricity-responsive capability of the MXCC/PC bilayer-structured actuator (power off for BI and BIII, and power on for BII and BIV). (C) NIR light–responsive capability of the MXCC/PC bilayer-structured actuator when NIR light was turned on and off with the active MXCC facing down (CI and CII) and up (CIII and CIV). (D) Temperature change profile as the NIR light was turned on (80 mW cm−2) and off for MXCC-, MXene-, and cellulose-based actuators. (E) IR images of MXCC- and cellulose-based actuators without (EI and EIII) and with (EII and EIV) NIR light illumination (80 mW cm−2). (F) Series of photographs showing the NIR light actuation process of the MXCC/PC bilayer-structured actuator. (G) Bending angle as a function of time during light turned on and off for the actuators based on MXCC and MXene, respectively. (H) Corresponding weight change as a function of time during light turned on and off for the MXCC/PC bilayer-structured actuator. (Photo credit: Guofa Cai, Nanyang Technological University.)‏ Guofa Cai et al. Sci Adv 2019;5:eaaw7956 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).