Warm Up Find the unknown side length in each right triangle with legs a and b and hypotenuse c. 1. a = 20, b = 21 2. b = 21, c = 35 3. a = 20, c = 52 c.

Slides:



Advertisements
Similar presentations
9-4 Perimeter and Area in the Coordinate Plane Warm Up
Advertisements

9-2 Developing Formulas for Circles and Regular Polygons Warm Up
Developing Formulas for Triangles and Quadrilaterals
Splash Screen. Over Lesson 11–1 5-Minute Check 1 A.48 cm B.56 cm C cm D.110 cm Find the perimeter of the figure. Round to the nearest tenth if necessary.
TODAY IN GEOMETRY…  Review: Pythagorean Theorem and Perimeter  Learning Target: You will find areas of different polygons  Independent practice.
Do Now 05/02/2014 Find the unknown side length in each right triangle with legs a and b and hypotenuse c. 1. a = 20, b = b = 21, c = 35.
9-1 Developing Formulas for Triangles and Quadrilaterals Warm Up
Surface Area of 10-5 Pyramids and Cones Warm Up Lesson Presentation
Over Lesson 11–1 A.A B.B C.C D.D 5-Minute Check 1 48 cm Find the perimeter of the figure. Round to the nearest tenth if necessary.
A tangram is an ancient Chinese puzzle made from a square
6-7 Area of Triangles and Quadrilaterals Warm Up Lesson Presentation
Warm-Up Find the area and perimeter of the rectangle
Developing Formulas for Triangles and Quadrilaterals
Bell Work Find the area of each figure. 5 in 9 in 13 in 6 in 16 in 22 in 10 in A = (13 + 9) 5 A = 11 5 A = (22) 5 A = 55 in² A = ( ) 10 A =
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
8-4 Area of Triangles and Trapezoids Learn to find the area of triangles and trapezoids.
Warm Up Find the area of each figure.
Holt Course 2 NY-10 Using the Pythagorean Theorem NY-10 Using the Pythagorean Theorem Holt Course 2 Lesson Presentation Lesson Presentation.
Quiz 1. Find the perimeter of the figure. 2. Find the area of the figure. 12 ft 4 ft5 ft 3. The perimeter of the triangle 4. The perimeter of the combined.
Solving Radical Equations
Holt CA Course Perimeter Warm Up 1. What figure has four equal sides and four right angles? 2. What figure has eight sides? 3. What figure has five.
Holt CA Course Perimeter The perimeter of a polygon is the sum of the lengths of its sides.
Warm Up Find the unknown side length in each right triangle with legs a and b and hypotenuse c. 1. a = 20, b = b = 21, c = a = 20, c = 52 c.
Warm Up Find the area of each figure.
Holt CA Course Perimeter Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Holt Geometry 9-3 Composite Figures Warm Up Find the area of each figure. 1. a rectangle in which b = 14 cm and h = 5 cm 2. a triangle in which b = 6 in.
Develop and apply the formulas for the areas of triangles and special quadrilaterals. Solve problems involving perimeters and areas of triangles and special.
Holt McDougal Geometry 10-3 Composite Figures 10-3 Composite Figures Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
A.17.9 B.22 C.13.3 D.9.1 Find the perimeter of quadrilateral WXYZ with vertices W(2, 4), X(–3, 3), Y(–1, 0), and Z(3, –1).
Areas of Trapezoids, Rhombi, and Kites LESSON 11–2.
Holt CA Course Perimeter AF3.1 Use variables in expressions describing geometric quantities (e.g., P = 2w + 2l, A = bh, C =  d–the formulas for.
Applying the Pythagorean Theorem and Its Converse 3-9 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson.
Chapter 10 Area Section 10.1 Areas of Parallelograms and Triangles.
Holt McDougal Geometry 10-1 Developing Formulas Triangles and Quadrilaterals 10-1 Developing Formulas Triangles and Quadrilaterals Holt Geometry Warm Up.
Holt McDougal Geometry 10-1 Developing Formulas Triangles and Quadrilaterals 10-1 Developing Formulas Triangles and Quadrilaterals Holt Geometry Warm Up.
Holt Geometry 9-1 Developing Formulas for Triangles and Quadrilaterals Warm Up Find the unknown side length in each right triangle with legs a and b and.
On Socrative. Take the quiz on Socrative Below is Question #4.
Do Now Find the unknown side length in each right triangle with legs a and b and hypotenuse c. 1. a = 20, b = b = 21, c = a = 20, c = 52 b.
Holt Algebra Solving Radical Equations Warm Up(Add to Hw) Solve each equation. 1. 3x +5 = x + 1 = 2x – (x + 7)(x – 4) = 0 5. x 2.
Entry Task Find the unknown side length in each right triangle with legs a and b and hypotenuse c. 1. a = 20, b = b = 21, c = 35 c = 29 a = 28.
Objectives Develop and apply the formulas for the areas of triangles and special quadrilaterals. Solve problems involving perimeters and areas of triangles.
Warm Up Find the unknown side length in each right triangle with legs a and b and hypotenuse c. 1. a = 20, b = b = 21, c = a = 20, c = 52 c.
10-1 Developing Formulas Triangles and Quadrilaterals Warm Up
Warm Up Find the unknown side length in each right triangle with legs a and b and hypotenuse c. 1. a = 20, b = b = 21, c = a = 20, c = 52.
10-1 Developing Formulas Triangles and Quadrilaterals Warm Up
9-1 Developing Formulas for Triangles and Quadrilaterals Warm Up
Warm up.
9-1 Developing Formulas for Triangles and Quadrilaterals Warm Up
Warm Up Find the unknown side length in each right triangle with legs a and b and hypotenuse c. 1. a = 20, b = b = 21, c = a = 20, c = 52 c.
9-4 Perimeter and Area in the Coordinate Plane Warm Up
Objectives Develop and apply the formulas for the areas of triangles and special quadrilaterals. Solve problems involving perimeters and areas of triangles.
Finding the Area of Special Quadrilaterals
Objectives Develop and apply the formulas for the areas of triangles and special quadrilaterals. Solve problems involving perimeters and areas of triangles.
Class Greeting.
9-1 Developing Formulas for s and quads
9-1 Developing Formulas for Triangles and Quadrilaterals Warm Up
Areas of Trapezoids, Rhombi, and Kites
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Holt McDougal Geometry 9-1 Developing Formulas for Triangles and Quadrilaterals 9-1 Developing Formulas for Triangles and Quadrilaterals Holt Geometry.
9-1.
A tangram is an ancient Chinese puzzle made from a square
10-1 Developing Formulas Triangles and Quadrilaterals Warm Up
Area of Triangles and Trapezoids
9-1 Developing Formulas for Triangles and Quadrilaterals Warm Up
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Area of Trapezoids, Rhombuses, and Kites
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Area of a a parallelogram
Area of Parallelograms and Triangles
9-1 Developing Formulas for Triangles and Quadrilaterals
Presentation transcript:

Warm Up Find the unknown side length in each right triangle with legs a and b and hypotenuse c. 1. a = 20, b = 21 2. b = 21, c = 35 3. a = 20, c = 52 c = 29 a = 28 b = 48

Developing Formulas for Triangles and Quadrilaterals 9-1 Holt Geometry

Recall that a rectangle with base b and height h has an area of A = bh. You can use the Area Addition Postulate to see that a parallelogram has the same area as a rectangle with the same base and height.

Remember that rectangles and squares are also parallelograms Remember that rectangles and squares are also parallelograms. The area of a square with side s is A = s2, and the perimeter is P = 4s.

The height of a parallelogram is measured along a segment perpendicular to a line containing the base. Remember! The perimeter of a rectangle with base b and height h is P = 2b + 2h or P = 2 (b + h). Remember!

Example 1A: Finding Measurements of Parallelograms Find the area of the parallelogram. Step 1 Use the Pythagorean Theorem to find the height h. 302 + h2 = 342 h = 16 Step 2 Use h to find the area of the parallelogram. Area of a parallelogram A = bh A = 11(16) Substitute 11 for b and 16 for h. A = 176 mm2 Simplify.

Example 1B: Finding Measurements of Parallelograms Find the height of a rectangle in which b = 3 in. and A = (6x² + 24x – 6) in2. A = bh Area of a rectangle Substitute 6x2 + 24x – 6 for A and 3 for b. 6x2 + 24x – 6 = 3h 3(2x2 + 8x – 2) = 3h Factor 3 out of the expression for A. Divide both sides by 3. 2x2 + 8x – 2 = h h = (2x2 + 8x – 2) in. Sym. Prop. of =

Example 1C: Finding Measurements of Parallelograms Find the perimeter of the rectangle, in which A = (79.8x2 – 42) cm2 Step 1 Use the area and the height to find the base. A = bh Area of a rectangle 79.8x2 – 42 = b(21) Substitute 79.8x2 – 42 for A and 21 for h. 3.8x2 – 2 = b Divide both sides by 21.

Example 1C Continued Step 2 Use the base and the height to find the perimeter. P = 2b + 2h Perimeter of a rectangle Substitute 3.8x2 – 2 for b and 21 for h. P = 2(3.8x2 – 2) + 2(21) P = (7.6x2 + 38) cm Simplify.

Example 2B: Finding Measurements of Triangles and Trapezoids Find the base of the triangle, in which A = (15x2) cm2. Area of a triangle Substitute 15x2 for A and 5x for h. Divide both sides by x. Multiply both sides by 6x = b b = 6x cm Sym. Prop. of =

Example 2C: Finding Measurements of Triangles and Trapezoids Find b2 of the trapezoid, in which A = 231 mm2. Area of a trapezoid Substitute 231 for A, 23 for , and 11 for h. Multiply both sides by . 42 = 23 + b2 19 = b2 Subtract 23 from both sides. b2 = 19 mm Sym. Prop. of =

Example 3B: Finding Measurements of Rhombuses and Kites Find the area of a rhombus. Area of a rhombus Substitute (8x+7) for d1 and (14x-6) for d2. Multiply the binomials (FOIL). . Distrib. Prop.

Check It Out! Example 3 Find d2 of a rhombus in which d1 = 3x m and A = 12xy m2. Formula for area of a rhombus Substitute. d2 = 8y m Simplify.

Lesson Quiz: Part I Find each measurement. 1. the height of the parallelogram, in which A = 182x2 mm2 h = 9.1x mm 2. the perimeter of a rectangle in which h = 8 in. and A = 28x in2 P = (16 + 7x) in.

Lesson Quiz: Part II 3. the area of the trapezoid A = 16.8x ft2 4. the base of a triangle in which h = 8 cm and A = (12x + 8) cm2 b = (3x + 2) cm 5. the area of the rhombus A = 1080 m2

Lesson Quiz: Part III 6. The wallpaper pattern shown is a rectangle with a base of 4 in. and a height of 3 in. Use the grid to find the area of the shaded kite. A = 3 in2