Do Now 4/12/19 Take out HW from last night. Copy HW in your planner.

Slides:



Advertisements
Similar presentations
Simplify Radical Expressions
Advertisements

Simplify, Add, Subtract, Multiply and Divide
Simplifying Radical Expressions Product Property of Radicals For any numbers a and b where and,
Section P3 Radicals and Rational Exponents
5.6 Radical Expressions Rationalizing the denominator Like radical expressions Conjugates.
Binomial Radical Expressions
1.3 Complex Number System.
Roots and Radicals.
Simplifying When simplifying a radical expression, find the factors that are to the nth powers of the radicand and then use the Product Property of Radicals.
Identify the perfect square in each set , 81, 27, , 99, 8, , 84, 12, , 216, 196, 72 Find the Prime Factorization of.
5.5 Roots of Real Numbers and Radical Expressions.
Simplifying When simplifying a radical expression, find the factors that are to the nth powers of the radicand and then use the Product Property of Radicals.
Unit 2 Algebra Investigations Lesson 3: Rational and Radical Expressions Notes 3.4: Simplify Radical Expressions.
Simplifying Radical Expressions Chapter 10 Section 1 Kalie Stallard.
Simplify Radical Expressions. EQs…  How do we simplify algebraic and numeric expressions involving square root?  How do we perform operations with square.
5.6 Solving Quadratic Function By Finding Square Roots 12/14/2012.
3.4 Warm Up Factor the expressions. 1. x² + 8x x² - 7x x² + 2x - 48.
6.3 Binomial Radical Expressions P You can only use this property if the indexes AND the radicands are the same. This is just combining like terms.
Chapter 10.5 Notes Part I: Simplify Radical Expressions Goal: You will simplify radical expressions.
Multiplying and Dividing Radicals The product and quotient properties of square roots can be used to multiply and divide radicals, because: and. Example.
Do Now 5/4/10 Take out HW from last night. Take out HW from last night. Cumulative Test Chapters 1-10 Cumulative Test Chapters 1-10 Copy HW in your planner.
Copyright © Cengage Learning. All rights reserved. Roots, Radical Expressions, and Radical Equations 8.
SIMPLIFYING RADICAL EXPRESSIONS
Chapter 9 Section 4 Dividing Square Roots. Learning Objective 1.Understand what it means for a square root to be simplified 2.Use the Quotient Rule to.
Conjugate of Denominator
To divide radicals: divide the coefficients divide the radicands if possible rationalize the denominator so that no radical remains in the denominator.
Conjugate: Value or that is multiplied to a radical expression That clears the radical. Rationalizing: Removing a radical expression from the denominator.
Copyright © 2015, 2011, 2007 Pearson Education, Inc. 1 1 Chapter 8 Rational Exponents, Radicals, and Complex Numbers.
7-2 Properties of Rational Exponents (Day 1) Objective: Ca State Standard 7.0: Students add, subtract, multiply, divide, reduce, and evaluate rational.
§ 7.4 Adding, Subtracting, and Dividing Radical Expressions.
+ Warm Up #2. + HW Check – Exponents Practice Simplifying Radical Expressions.
7.5 Operations with Radical Expressions. Review of Properties of Radicals Product Property If all parts of the radicand are positive- separate each part.
 State whether or not the given statements are true or false. If true, give two examples using real numbers to show. If false, provide one counterexample.
Section 11.2B Notes Adding and Subtracting Radical Expressions Objective: Students will be able to add and subtract radical expressions involving square.
Chapter R Section 7: Radical Notation and Rational Exponents
Warm Up Simplify each expression
Roots, Radicals, and Root Functions
Operations With Radical Expressions
Section 7.5 Expressions Containing Several Radical Terms
Simplifying and Combining Radical Expressions
Multiplying Radicals.
Simplifying Radical Expressions
6.3 Binomial Radical Expressions
Do-Now: Simplify (using calculator)
Simplifying Radical Expressions
12.1 Operations with Radicals
6.7 Imaginary Numbers & 6.8 Complex Numbers
Radicals Simplify, Add, Subtract, Multiply, Divide and Rationalize
Simplifying Radical Expressions
Dividing Radical Expressions.
Simplifying Radical Expressions.
Simplifying Radical Expressions
Simplifying Radical Expressions
Simplifying Radical Expressions.
Simplifying Radical Expressions.
Simplify Radical Expressions
12.2 Operations with Radical Expressions √
Properties of Radicals
Warmup Find the exact value. 1. √49 2. –√144.
Simplifying Radical Expressions.
5.2 Properties of Rational Exponents and Radicals
Chapter 15 Roots and Radicals.
Multiplying, Dividing, and Simplifying Radicals
Operations with Radical Expressions √
Simplifying Radical Expressions
Dividing Radical Expressions
Simplifying Radical Expressions
Simplifying Radical Expressions.
Section 9.1 “Properties of Radicals”
Do Now 1/17/19 Copy HW in your planner.
Presentation transcript:

Do Now 4/12/19 Take out HW from last night. Copy HW in your planner. Text p. 485, #8-36 evens, #46-54 evens Copy HW in your planner. Text p. 485, #56-60 evens, #76-90 evens Go Formative and simplify the following expressions.

Homework Text p. 485, #8-36 evens

Homework Text p. 485, #8-36 evens

Homework Text p. 485, #46-54 evens

Learning Goal Learning Target SWBAT simplify, graph, and define characteristics of radical functions and solve quadratic equations   Learning Target SWBAT use properties of radicals to simplify expressions, simplify expressions by rationalizing the denominator, and perform operations with radicals. 

Section 9.1 “Properties of Radicals” A radical expression is in simplest form if the following conditions are true: The rules also apply for simplifying cube roots and nth roots. No perfect square factors other than 1 are in the radicand. -No fractions are in the radicand. No radicals appear in the denominator of a fraction.

Product Property of Radicals The square (or cube) root of a product equals the product of the square ( or cube) roots of the factors.

Quotient Property of Radicals The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

Rationalizing the Denominator Whenever there is a radical (that is not a perfect square) in the denominator, the radical must be eliminated by rationalizing the denominator. Need to rationalize the denominator Multiply by 1 Product property of radicals Simplify

Real World Connections The orbital period of a planet is the time it takes the planet to travel around the Sun. You can find the orbital period P (in Earth years) using the formula , where d is the average distance (in astronomical units AU) of a planet from the Sun. a). Simplify the formula. b). What is Jupiter’s orbital period.

Real World Connections c). One step further. Search the Internet for the AUs for another planet. Calculate the orbital period.

Adding and Subtract Radicals Part 2 Adding and Subtract Radicals You can add and subtract radicals that have the same radicands. Think of as combining ‘like terms’ Look for common radicands Simplify

Try It Out…

Multiplying Radical Expressions You can multiply radical expressions the same way you multiplied monomials and binomials using the distributive property and FOIL. simplify & combine like terms

Try It Out… simplify & combine like terms

Conjugates Need to use a conjugate to Multiply by 1 rationalize the denominator Multiply by 1 Product property of radicals simplify & combine like terms Simplify

Try It Out… Need to use a conjugate to Need to use a conjugate to rationalize the denominator Need to use a conjugate to rationalize the denominator Multiply by 1 Multiply by 1 Simplify Simplify

Clock Partners With your 6:00 partner, complete text p. 485, #13, 17, 23, 27, 31, 33, 47, 51, 55, 57, 83, & 87