Informed Search.

Slides:



Advertisements
Similar presentations
Informed search algorithms
Advertisements

Chapter 4: Informed Heuristic Search
Lights Out Issues Questions? Comment from me.
Informed search algorithms
Review: Search problem formulation
Informed Search Algorithms
Notes Dijstra’s Algorithm Corrected syllabus.
Informed search strategies
Informed search algorithms
An Introduction to Artificial Intelligence
A* Search. 2 Tree search algorithms Basic idea: Exploration of state space by generating successors of already-explored states (a.k.a.~expanding states).
Problem Solving: Informed Search Algorithms Edmondo Trentin, DIISM.
Informed search algorithms
Solving Problem by Searching
1 Heuristic Search Chapter 4. 2 Outline Heuristic function Greedy Best-first search Admissible heuristic and A* Properties of A* Algorithm IDA*
Search Strategies CPS4801. Uninformed Search Strategies Uninformed search strategies use only the information available in the problem definition Breadth-first.
Problem Solving by Searching
SE Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Review: Search problem formulation
CS 460 Spring 2011 Lecture 3 Heuristic Search / Local Search.
Problem Solving and Search in AI Heuristic Search
CSC344: AI for Games Lecture 4: Informed search
CS 561, Session 6 1 Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
Informed search algorithms
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search.
Informed search algorithms
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics.
CHAPTER 4: INFORMED SEARCH & EXPLORATION Prepared by: Ece UYKUR.
1 Shanghai Jiao Tong University Informed Search and Exploration.
Informed search algorithms Chapter 4. Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most.
ISC 4322/6300 – GAM 4322 Artificial Intelligence Lecture 3 Informed Search and Exploration Instructor: Alireza Tavakkoli September 10, 2009 University.
Informed search strategies Idea: give the algorithm “hints” about the desirability of different states – Use an evaluation function to rank nodes and select.
Informed searching. Informed search Blind search algorithms do not consider any information about the states and the goals Often there is extra knowledge.
Informed Search Methods. Informed Search  Uninformed searches  easy  but very inefficient in most cases of huge search tree  Informed searches  uses.
Informed Search Strategies Lecture # 8 & 9. Outline 2 Best-first search Greedy best-first search A * search Heuristics.
Review: Tree search Initialize the frontier using the starting state While the frontier is not empty – Choose a frontier node to expand according to search.
CSC3203: AI for Games Informed search (1) Patrick Olivier
1 Kuliah 4 : Informed Search. 2 Outline Best-First Search Greedy Search A* Search.
Informed Search and Heuristics Chapter 3.5~7. Outline Best-first search Greedy best-first search A * search Heuristics.
4/11/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 4, 4/11/2005 University of Washington, Department of Electrical Engineering Spring 2005.
A General Introduction to Artificial Intelligence.
Feng Zhiyong Tianjin University Fall  Best-first search  Greedy best-first search  A * search  Heuristics  Local search algorithms  Hill-climbing.
Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most desirable unexpanded node Implementation:
Pengantar Kecerdasan Buatan 4 - Informed Search and Exploration AIMA Ch. 3.5 – 3.6.
Chapter 3.5 and 3.6 Heuristic Search Continued. Review:Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
Heuristic Functions.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 5 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
For Monday Read chapter 4 exercise 1 No homework.
Chapter 3 Solving problems by searching. Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known.
Chapter 3.5 Heuristic Search. Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
Review: Tree search Initialize the frontier using the starting state
Last time: Problem-Solving
Artificial Intelligence (CS 370D)
Heuristic Search Introduction to Artificial Intelligence
Artificial Intelligence Problem solving by searching CSC 361
Discussion on Greedy Search and A*
Discussion on Greedy Search and A*
CS 4100 Artificial Intelligence
Artificial Intelligence Informed Search Algorithms
Informed search algorithms
Informed search algorithms
Artificial Intelligence
HW 1: Warmup Missionaries and Cannibals
HW 1: Warmup Missionaries and Cannibals
Artificial Intelligence
Midterm Review.
Reading: Chapter 4.5 HW#2 out today, due Oct 5th
Solving Problems by Searching
Presentation transcript:

Informed Search

Informed Search Strategies uses problem-specific knowledge beyond the definition of the problem itself Greedy best-first search A* search

Romania with step costs in km

Informed Search Idea: use an evaluation function f(n) for each node estimate of "desirability" Expand most desirable unexpanded node Implementation: Order the nodes in frontier in decreasing order of desirability Special cases: greedy best-first search A* search

Greedy best-first search Evaluation function f(n) = h(n) (heuristic) = estimate of cost from n to goal e.g., hSLD(n) = straight-line distance from n to Bucharest Greedy best-first search expands the node that appears to be closest to goal

Romania with step costs in km

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Properties of greedy best-first search Complete? Yes Optimal? No Time? O(bm), but a good heuristic can give dramatic improvement Space? O(bm)

A* search Best-known form of informed search. Idea: avoid expanding paths that are already expensive Evaluation function f(n) = g(n) + h(n) f(n) = estimated total cost of path through n to goal g(n) = cost so far to reach n h(n) = estimated cost from n to goal

A* search Conditions for optimality: Admissibility Consistency

Admissible heuristics A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n. An admissible heuristic never overestimates the cost to reach the goal Example: hSLD(n) (never overestimates the actual road distance)

Consistency (Monotonicity) A heuristic h(n) is consistent if, for every node parent and every successor child of parent, h(parent) <= c(parent->child) + h(child) triangle inequality

Romania with step costs in km

A* search example

A* search example

A* search example

A* search example

A* search example

A* search example

A* Search Optimal Time Complete Yes The better the heuristic, the better the time Best case h is perfect, O(d) Worst case h = 0, O(bd) same as Uniform Cost Search Space O(bd)

Heuristic Functions To use A* a heuristic function must be used that never overestimates the number of steps to the goal

Heuristic Function Function h(N) that estimates the cost of the path from node N to goal node. Example: 8-puzzle 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 h1(N) = number of misplaced tiles = 6 N goal

Manhattan distances

Heuristic Function Function h(N) that estimate the cost of the path from node N to goal node. Example: 8-puzzle h2(N) = sum of the distances of every tile to its goal position = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 N goal

8-Puzzle f(N) = h1(N) = number of misplaced tiles 3 4 3 4 5 3 3 4 2 4 4 4 2 1

8-Puzzle f(N) = g(N) + h1 (N) with h1(N) = number of misplaced tiles 3+3 3+4 1+5 1+3 2+3 2+4 5+2 5+0 0+4 3+4 3+2 4+1

8-Puzzle f(N) = h2(N) =  distances of tiles to goal 6 4 5 3 2 5 4 2 1

8-Puzzle EXERCISE: f(N) = g(N) + h2(N) with h2(N) =  distances of tiles to goal 0+4

Heuristic quality and dominance 1200 random problems with solution lengths from 2 to 24. h2 dominates h1 and is better for search

Relaxed problems 1 2 3 4 5 6 7 8 A problem with fewer restrictions on the actions is called a relaxed problem. The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h1(n) gives the shortest solution If the rules are relaxed so that a tile can move to any adjacent square, then h2(n) gives the shortest solution