An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone  Mark R. van der Harst, D.V.M., Pieter.

Slides:



Advertisements
Similar presentations
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Advertisements

A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density  W.D. Burnett, S.A. Kontulainen,
2D and 3D MOCART scoring systems assessed by 9
Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis  F. Intema, T.P. Thomas,
The relationships between bone mineral density in the spine, hip, distal femur and proximal tibia and medial minimum joint space width in the knees of.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
The groove model of osteoarthritis applied to the ovine fetlock joint
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
B.J. Ahern, J. Parvizi, R. Boston, T.P. Schaer 
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
M. M. Temple, Ph. D. , W. C. Bae, Ph. D. , M. Q. Chen, M. S. , M
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
B.J. Ahern, J. Parvizi, R. Boston, T.P. Schaer 
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral.
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study  Elizabeth.
Women have thinner cartilage and smaller joint surfaces than men after adjustment for body height and weight  I.G. Otterness, Ph.D., F. Eckstein, M.D. 
Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density  K. Akiyama,
Osteoarthritis year 2011 in review: biochemical markers of osteoarthritis: an overview of research and initiatives  Y. Henrotin  Osteoarthritis and Cartilage 
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
M. Finnilä, O-M. Aho, V. Tiitu, J. Thevenot, J. Rautiainen, M
Osteophytes, juxta-articular radiolucencies and cancellous bone changes in the proximal tibia of patients with knee osteoarthritis  E.A. Messent, Ph.D.,
The differences on extracellular matrix among each portion of meniscus
Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice  A. Cai, E. Hutchison,
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods  P. Podsiadlo, Ph.D., L.
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
A. Hosseini, S. K. Van de Velde, M. Kozanek, T. J. Gill, A. J
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis – part II: bone mineral density assessment  M. Bouchgua, D.M.V., K.
Degeneration, inflammation, regeneration, and pain/disability in dogs following destabilization or articular cartilage grooving of the stifle joint  L.N.
Quantitative MRI of parallel changes of articular cartilage and underlying trabecular bone in degeneration  E. Lammentausta, M.Sc., P. Kiviranta, B.M.,
E.B. Hunziker, M.D., A. Stähli, D.M.D.  Osteoarthritis and Cartilage 
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model  F. Intema, H.A.W.
The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores  N.L.A. Fell, B.M. Lawless,
Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFβ2 and FGF2  Y.M. Jenniskens, M.Sc., W. Koevoet, B.Sc., A.C.W. de.
Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease  L. Knott, N.C. Avery, A.P. Hollander,
M.Y. Chan, J.R. Center, J.A. Eisman, T.V. Nguyen 
Joint dependent concentrations of bone alkaline phosphatase in serum and synovial fluids of horses with osteochondral injury: an analytical and clinical.
Synovial fluid levels of IL-6 and MMP'S in a mild equine LPS model
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
Who should have a joint replacement? A plea for more ‘phronesis’
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
G. H. Lo, M. D. , M. Sc. , J. Niu, M. D. , D. Sc. , C. E. McLennan, M
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
Evidence for bone mineral density and bone resorption in middle and elderly women with knee osteoarthritis in Shanghai: a cross sectional study  Q. Xiaofeng 
The association between hip bone marrow lesions and bone mineral density: a cross- sectional and longitudinal population-based study  H. Ahedi, D. Aitken,
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
3D modelling of the hip joint from clinical imaging data
Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes1 1 Supported by IsoTis S.A.  J. Malda, Ph.D., C.A.
Cortical thickness mapping of the proximal femur: towards a new imaging biomarker of hip osteoarthritis  T.D. Turmezei, G.M. Treece, A.H. Gee, K.E. Poole 
Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage  J. Schooler, D. Kumar, L. Nardo, C. McCulloch,
Osteoarthritis year 2012 in review: biology
Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years  J. Carnes, O.
Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation  L.G.E. Cox, C.C. van Donkelaar,
Osteoarthritis year in review 2015: biology
Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen.
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
Osteoarthritis year in review 2016: mechanics
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
General Information Osteoarthritis and Cartilage
Presentation transcript:

An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone  Mark R. van der Harst, D.V.M., Pieter A.J. Brama, Ph.D., Chris H.A. van de Lest, Ph.D., Geesje H. Kiers, Jeroen DeGroot, Ph.D., P.René van Weeren, Ph.D.  Osteoarthritis and Cartilage  Volume 12, Issue 9, Pages 752-761 (September 2004) DOI: 10.1016/j.joca.2004.05.004

Fig. 1 Sample sites on the proximal articular surface of the first phalanx (1=mediodorsal articular margin; 2=central fovea). Osteoarthritis and Cartilage 2004 12, 752-761DOI: (10.1016/j.joca.2004.05.004)

Fig. 2 Percentage denatured collagen (mean±SD) in cartilage, subchondral- and trabecular bone at the joint margin, site 1 (solid bars) and the central fovea, site 2 (open bars) of the proximal first phalanx. Asterisks denote significant difference between the two different sites and subchondral bone vs trabecular bone; *P<0.05, **P<0.01, ***P<0.001. Osteoarthritis and Cartilage 2004 12, 752-761DOI: (10.1016/j.joca.2004.05.004)

Fig. 3 Hydroxylysine content (mol/triple helix; mean±SD) of cartilage, subchondral- and trabecular bone at the joint margin, site 1 (solid bars) and the central fovea, site 2 (open bars) of the proximal first phalanx. Hyl=hydroxylysine. For further explanation see caption of Fig. 2. Osteoarthritis and Cartilage 2004 12, 752-761DOI: (10.1016/j.joca.2004.05.004)

Fig. 4 Hydroxylysylpyridinoline cross-linking (mol/mol triple helix collagen; mean±SD) of cartilage, subchondral- and trabecular bone at the joint margin, site 1 (solid bars) and the central fovea, site 2 (open bars) of the proximal first phalanx. HP=hydroxylysylpyridinoline. For further explanation see caption of Fig. 2. Osteoarthritis and Cartilage 2004 12, 752-761DOI: (10.1016/j.joca.2004.05.004)

Fig. 5 (a) Number of pentosidine cross-links (mmol/mol triple helix collagen) in equine cartilage in relation to age at the joint margin, site 1 and the central fovea, site 2 of the first phalanx. P=significance level; r=correlation coefficient. (b) Number of pentosidine cross-links (mmol/mol triple helix collagen) in subchondral bone in relation to age at the central fovea, site 2 of the first phalanx. P=significance level; r=correlation coefficient. (c) Number of pentosidine cross-links (mmol/mol triple helix collagen) in equine trabecular bone in relation to age at the joint margin, site 1 and the central fovea, site 2 of the first phalanx. P=significance level; r=correlation coefficient. Osteoarthritis and Cartilage 2004 12, 752-761DOI: (10.1016/j.joca.2004.05.004)

Fig. 6 (a) Correlation between calcium content (mmol/g dw) and total amount of pyridinoline cross-links (HP plus LP in mol/mol triple helix) at the joint margin, site 1 and the central fovea, site 2 of subchondral bone samples of the proximal first phalanx. HP=hydroxylysylpyridinoline; LP=lysylpyridinoline; dw=dry weight; P=significance level; r=correlation coefficient. (b) Correlation between calcium content (mmol/g dw) and total amount of pyridinoline cross-links (HP plus LP in mol/mol triple helix) at the joint margin, site 1 and the central fovea, site 2 of trabecular bone samples of the proximal first phalanx. HP=hydroxylysylpyridinoline; LP=lysylpyridinoline; dw=dry weight; P=significance level; r=correlation coefficient. Osteoarthritis and Cartilage 2004 12, 752-761DOI: (10.1016/j.joca.2004.05.004)

Fig. 7 BMD (mg/cm3; mean±SD) measured 2mm under the cartilage layer through the subchondral bone plate and at a depth of 8mm through the trabecular bone at the joint margin, site 1 (solid bars) and the central fovea, site 2 (open bars) of the first phalanx. BMD=bone mineral density. For further explanation see caption of Fig. 2. Osteoarthritis and Cartilage 2004 12, 752-761DOI: (10.1016/j.joca.2004.05.004)