Fig. 1 Near-field ultrafast and broadband pump-probe of EP in WSe2.

Slides:



Advertisements
Similar presentations
Fig. 1 Characterization of the device structure.
Advertisements

Fig. 4 2D-IR spectroscopy on LO/Zn under wet and dry conditions.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 2 CL-DMD modeling of FKBP.
Fig. 1 Typical presbyopic vision with various methods of correction.
Fig. 1 Pump-probe signatures of vermilion (red HgS), black HgS, and metallic Hg. Pump-probe signatures of vermilion (red HgS), black HgS, and metallic.
Fig. 3 UV-induced vermilion degradation.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Crystal and electronic structure of WTe2.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 3 Saturation velocity of BP FETs.
Fig. 2 Ferroelectric domains resolved in WTe2 single crystals.
Fig. 6 PL study showing the lower energetic states at the layer edges.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 1 Experimental apparatus used to train and test free-flying bees on their capacity to learn addition and subtraction. Experimental apparatus used.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 3 Gate voltage dependence of the areal iDMI and PMA.
Fig. 1 fNIRS probe placement design for PFC, M1, and SMA measurements.
Fig. 1 Distribution of total and fake news shares.
Fig. 2 2D QWs of different propagation lengths.
Fig. 1 Schematic of WPS microscope.
Fig. 1 Structure of L10-IrMn.
Fig. 4 Optical polaritonic dipole antennas with h-BN.
Fig. 1 Resonant modes in h-BN nanodiscs in the RS2 band.
Fig. 1 Experimental setup.
Fig. 1 Schematic illustration and atomic-scale rendering of a silica AFM tip sliding up and down a single-layer graphene step edge on an atomically flat.
Fig. 2 EUV TG signal. EUV TG signal. Black lines in (A), (B), and (C) are the EUV TG signals from Si3N4 membranes at LTG = 110, 85, and 28 nm, respectively,
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 1 Plasmonic pumping experiment and photoinduced near-field optical response in Hg0.81Cd0.19Te. Plasmonic pumping experiment and photoinduced near-field.
Fig. 3 Load dependence of friction force and corresponding COF.
Fig. 1 Energy levels and laser couplings of the inelastic optical WM-enhanced NMOR effect. Energy levels and laser couplings of the inelastic optical WM-enhanced.
Fig. 5 In-plane angle dependence of SOT efficiency (θDL,m) and resonance condition (Hres). In-plane angle dependence of SOT efficiency (θDL,m) and resonance.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Characteristics of ultrathin single-crystalline semiconductor films
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 1 Cross-sectional images of He-implanted V/Cu/V samples.
Fig. 2 Characterization of ZnxCo1−xO NRs.
Fig. 2 tr-RIXS measurement of charge order in LBCO.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
THz pulse-pump optical reflectivity probe spectroscopy on Nd2CuO4
Fig. 1 Experiment description.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 3 Raman spectra for the composite materials of the TS.
Fig. 2 Imaging resonant modes with s-SNOM.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 3 Earthquake seismic waves detected in Berkeley.
Fig. 1 Structural and electrical properties of Bi2Se3/BaFe12O19.
Multiplexed four- and eight-channel devices for rapid processing
Fig. 2 Realization of asymmetric photon transport.
Fig. 2 Normal-incidence 2PPE PEEM results.
Fig. 3 Ultrafast PM spectroscopy of PEPI film excited at 3.1 eV.
Fig. 1 Effects of experimental warming on nematode communities across the gradient of plant species richness. Effects of experimental warming on nematode.
Fig. 3 Experimental verification.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Mapping of abundance of the most dominant bacterial and archaeal phyla across France. Mapping of abundance of the most dominant bacterial and archaeal.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 2 Pump-probe near-field images showing the evolution of the EP wave packet in WSe2. Pump-probe near-field images showing the evolution of the EP wave.
Fig. 4 Single-particle contact angle measurements.
Fig. 4 Changes in amount of atmospheric aerosol and of solar energy at Earth’s surface after nuclear exchange. Changes in amount of atmospheric aerosol.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 1 Blood nicotine levels after escalation of nicotine intake.
Fig. 3 Switchable adhesion influenced by structural design and object conductivity. Switchable adhesion influenced by structural design and object conductivity.
Fig. 1 Doping schematics and optical properties.
Fig. 4 Effects of individual picosecond and microsecond pulses.
Electronic states of U1−xThxSb2 and their temperature evolution
Presentation transcript:

Fig. 1 Near-field ultrafast and broadband pump-probe of EP in WSe2. Near-field ultrafast and broadband pump-probe of EP in WSe2. (A) Schematic of the ultrafast pump-probe EP excitation and detection. The pump pulse impinges on the tip apex, which localizes the pulse energy, and excites an EP wave packet, which propagates on the WSe2 slab. The wave packet is reflected at the boundaries and within the thickness of the flake and is ultimately scattered back by the tip. (B) Schematic of the experimental near-field pump-probe apparatus. The ultrafast sub–10-fs pulse Ti:sapphire source, spanning a broad spectrum of 650 to 1050 nm, is split by a dichroic mirror (DM) into two pulses: the pump encompassing the higher energies of 650 to 700 nm and the probe from 700 to 1050 nm. The probe is delayed with respect to the pump by steps of 66 ± 3.3 fs. The two pulses are recombined after the delay and focused onto a scattering SNOM tip. The tip is scanned across the WSe2 slab while maintained in the vicinity of the sample’s surface with a closed-loop feedback based on a tapping mode operation. Det, detector; PB, parabolic mirror; BS, 90/10 beamsplitter; RM, reference mirror; a.u., arbitrary units. (C) Spectrally resolved steady-state (probe only) SNOM imaging of a 60-nm-thick WSe2 slab at several wavelengths around the exciton A bandgap. The signals are normalized with respect to the background on the SiO2 far from the flake. We reveal an enhanced response at 760 nm, around the exciton A transition. AFM, atomic force microscopy. M. Mrejen et al. Sci Adv 2019;5:eaat9618 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).