Volume 36, Issue 3, Pages (February 2016)

Slides:



Advertisements
Similar presentations
A Histone H3 Lysine-27 Methyltransferase Complex Represses Lateral Root Formation in Arabidopsis thaliana  Gu Xiaofeng , Xu Tongda , He Yuehui   Molecular.
Advertisements

Volume 9, Issue 2, Pages (August 2005)
Tolloid gets Sizzled Competing with Chordin
Volume 14, Issue 6, Pages (June 2008)
Volume 9, Issue 12, Pages (December 2016)
DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs
Volume 11, Issue 2, Pages (August 2012)
Small RNAs Turn Over a New Leaf as Morphogens
Volume 24, Issue 4, Pages (February 2013)
Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots  Juthamas Chaiwanon, Zhi-Yong Wang 
Transcriptional Activation of Arabidopsis Axis Patterning Genes WOX8/9 Links Zygote Polarity to Embryo Development  Minako Ueda, Zhongjuan Zhang, Thomas.
Zhongjuan Zhang, Elise Tucker, Marita Hermann, Thomas Laux 
Impulse Control: Temporal Dynamics in Gene Transcription
Temporal Control of Plant Organ Growth by TCP Transcription Factors
Volume 23, Issue 20, Pages (October 2013)
Volume 9, Issue 2, Pages (February 2016)
MiR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana  Jia-Wei Wang, Benjamin Czech, Detlef Weigel 
Volume 26, Issue 5, Pages (September 2013)
Benoit Sorre, Aryeh Warmflash, Ali H. Brivanlou, Eric D. Siggia 
Takatoshi Kiba, Kentaro Takei, Mikiko Kojima, Hitoshi Sakakibara 
Volume 30, Issue 2, Pages (July 2014)
Kaoru Sugimoto, Yuling Jiao, Elliot M. Meyerowitz  Developmental Cell 
Edwards Allen, Zhixin Xie, Adam M. Gustafson, James C. Carrington  Cell 
Volume 22, Issue 12, Pages (March 2018)
Volume 17, Issue 1, Pages (July 2009)
Volume 24, Issue 23, Pages (December 2014)
Volume 7, Issue 3, Pages (September 2004)
Volume 10, Issue 2, Pages (February 2006)
Volume 16, Issue 6, Pages (March 2006)
Volume 18, Issue 6, Pages (June 2010)
Volume 12, Issue 4, Pages (April 2007)
Volume 125, Issue 7, Pages (June 2006)
The WUSCHEL Related Homeobox Protein WOX7 Regulates the Sugar Response of Lateral Root Development in Arabidopsis thaliana  Danyu Kong, Yueling Hao, Hongchang.
Volume 22, Issue 4, Pages (April 2012)
Volume 25, Issue 23, Pages (December 2015)
Volume 26, Issue 1, Pages (January 2016)
Volume 28, Issue 4, Pages (February 2014)
Rab-A1c GTPase Defines a Population of the Trans-Golgi Network that Is Sensitive to Endosidin1 during Cytokinesis in Arabidopsis  Xingyun Qi, Huanquan.
Volume 24, Issue 19, Pages (October 2014)
Promotion Effects of miR-375 on the Osteogenic Differentiation of Human Adipose- Derived Mesenchymal Stem Cells  Si Chen, Yunfei Zheng, Shan Zhang, Lingfei.
Caitlin M. McDonold, J. Christopher Fromme  Developmental Cell 
Metabolic Control of Persister Formation in Escherichia coli
Volume 55, Issue 3, Pages (August 2014)
The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes  Li Zi-Yu , Li Bin , Dong Ai-Wu.
Mode of Regulation and the Insulation of Bacterial Gene Expression
Volume 28, Issue 4, Pages (February 2014)
Volume 45, Issue 5, Pages (March 2012)
Volume 133, Issue 1, Pages (April 2008)
Tyson J. Edwards, Marc Hammarlund  Cell Reports 
Volume 35, Issue 3, Pages (November 2015)
Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7  Jun Wei Pek, Ai Khim Lim, Toshie Kai  Developmental.
Physcomitrella patens Auxin-Resistant Mutants Affect Conserved Elements of an Auxin- Signaling Pathway  Michael J. Prigge, Meirav Lavy, Neil W. Ashton,
Arabidopsis WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence  Ligang Chen, Shengyuan Xiang, Yanli Chen,
Lan-Hsin Wang, Nicholas E. Baker  Developmental Cell 
Volume 23, Issue 11, Pages (June 2013)
Xiang Han, Hao Yu, Rongrong Yuan, Yan Yang, Fengying An, Genji Qin
Volume 19, Issue 3, Pages (September 2010)
Volume 44, Issue 4, Pages (February 2018)
MAX2 Affects Multiple Hormones to Promote Photomorphogenesis
Crosstalk in Cellular Signaling: Background Noise or the Real Thing?
Volume 4, Issue 5, Pages (September 2011)
Volume 15, Issue 1, Pages (July 2008)
Volume 43, Issue 5, Pages e5 (December 2017)
The Transcription Factor Mef2 Links the Drosophila Core Clock to Fas2, Neuronal Morphology, and Circadian Behavior  Anna Sivachenko, Yue Li, Katharine C.
Volume 26, Issue 4, Pages (August 2013)
Volume 18, Issue 9, Pages (May 2008)
A Splicing-Independent Function of SF2/ASF in MicroRNA Processing
Wang Long , Mai Yan-Xia , Zhang Yan-Chun , Luo Qian , Yang Hong-Quan  
Laura A. Moody, Steven Kelly, Ester Rabbinowitsch, Jane A. Langdale 
Zhen Zhang, Jamie M. Verheyden, John A. Hassell, Xin Sun 
Presentation transcript:

Volume 36, Issue 3, Pages 276-289 (February 2016) Ancient trans-Acting siRNAs Confer Robustness and Sensitivity onto the Auxin Response  Yevgeniy Plavskin, Akitomo Nagashima, Pierre-François Perroud, Mitsuyasu Hasebe, Ralph S. Quatrano, Gurinder S. Atwal, Marja C.P. Timmermans  Developmental Cell  Volume 36, Issue 3, Pages 276-289 (February 2016) DOI: 10.1016/j.devcel.2016.01.010 Copyright © 2016 Elsevier Inc. Terms and Conditions

Developmental Cell 2016 36, 276-289DOI: (10.1016/j.devcel.2016.01.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 1 Ppsgs3 Mutants Defective in tasiRNA Biogenesis Exhibit Defects in Gametophyte Development (A) Levels (mean ± SE, n ≥ 3) of miR390 and TAS3-derived tasiRNAs in Ppsgs3 normalized to wild-type; ∗∗p < 0.01, ∗∗∗p < 0.001, Student's t test. (B) Overview of the moss life cycle. (1) A germinating haploid spore gives rise to chloronemal filaments that by tip growth and branching form a dense network. (2) After ∼2 weeks, random tip cells differentiate to form long caulonemal filaments. (3) Both filaments also form modified side branches, (4) which grow into leafy gametophores. (5) These carry the sexual organs, and (6) upon fertilization the diploid sporophyte that (7) produces new spores via meiosis. (C and D) Caulonema occurrence on 15-day-old wild-type (C) and Ppsgs3 (D) plants. Dotted lines, areas at the protonemal edge lacking caulonema. Scale bar, 1 mm. (E) Gametophore numbers (mean ± SE, n ≥ 10) in Ppsgs3 compared with wild-type. ∗p < 0.05, ∗∗p < 0.01, Student's t test. See also Figures S1 and S2. Developmental Cell 2016 36, 276-289DOI: (10.1016/j.devcel.2016.01.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 2 The Ppsgs3 Phenotype Reflects Misregulation of tasiARF-Targeted ARFs at the Protonema Edge (A) qRT-PCR values for tasiRNA targets in Ppsgs3 (mean ± SE, n ≥ 3) normalized to wild-type. ∗p < 0.05, ∗∗∗p < 0.001, Student's t test. (B–E) Caulonema occurrence on 15-day-old PpARFb4-GUS (B), PpARFb4-GUS-m∗ (C), PpARFb4-GUS-t∗ (D), and PpARFb4-GUS-m∗t∗ (E) plants. Dotted lines, protonemal regions lacking caulonema. Scale bar, 1 mm. (F) Gametophore numbers (mean ± SE, n ≥ 10) on PpARFb4-GUS and PpARFb4-GUS-m∗t∗ plants. ∗∗p < 0.01, ∗∗∗p < 0.001, Student's t test. (G) PpARFb4-GUS activity in 1–3 cells at the tips of a small random (Ljung-Box test, p = 0.19) subset of chloronemal filaments. (H–J) Expanded reporter activity in PpARFb4-GUS-m∗ (H), PpARFb4-GUS-t∗ (I), and PpARFb4-GUS-m∗t∗ (J). The latter reflects the broad activity of the PpARFb4 promoter. Insets show isolated filaments; asterisks, cells expressing PpARFb4-GUS; red asterisks, tip cells. Scale bar, 0.1 mm. See also Figure S4. Developmental Cell 2016 36, 276-289DOI: (10.1016/j.devcel.2016.01.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 3 Plants Overexpressing PpARFb2 or PpARFb4 Resemble Ppsgs3 in Phenotype (A–F) Caulonema occurrence on 15-day-old plants following the estradiol-inducible expression of GUS-GFP (A and B), PpARFb2-m∗t∗ (C and D) or PpARFb4-m∗t∗ (E and F). Plants grown on 0μM (A, C, E) or 0.01μM (B, D, F) β-estradiol. Scale bar, 1 mm. See also Figure S3. Developmental Cell 2016 36, 276-289DOI: (10.1016/j.devcel.2016.01.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 4 Noise-Buffering Properties of the Auxin Response GRN (A) PpARFb transcript levels (mean ± SE, n ≥ 3) in 15-day-old plants grown on media with 0.1 versus 0 μM NAA. ∗p < 0.05, ∗∗∗p < 0.001, Student's t test. (B) Schematic of the Physcomitrella auxin response network. Auxin promotes degradation of Aux/IAA proteins, which repress ARG expression through interaction with activator ARFs (ARF (+)). ARG transcription is also repressed by repressor ARFs (ARF (−)), whose levels are modulated by tasiARF activity. ARG transcription only occurs when activator ARFs occupy the auxin-responsive element (ARE) in the promoter. The network contains two negative feedbacks, with both Aux/IAAs and repressor ARFs upregulated in response to auxin. The auxin response represses protonemal branching and promotes caulonema and bud formation. (C) Simulation of ARG expression in response to a prolonged, steady auxin signaling input under both wild-type and Ppsgs3 conditions plotted relative to the pre-signal state. (D) Simulation of ARG expression in response to a noisy auxin signaling input, plotted relative to steady-state ARG expression levels in wild-type and Ppsgs3. Auxin-level fluctuations are shown relative to the mean auxin level. (E) Effect of increasing ARF (−) transcript degradation rate, as a measure for small RNA regulation, on noise amplification (mean ± SE) and susceptibility. γA− transcript values for wild-type and Ppsgs3 used in (C) and (D) are marked. (F) The expression level CV for six ARGs in wild-type and Ppsgs3. See also Figure S5. Developmental Cell 2016 36, 276-289DOI: (10.1016/j.devcel.2016.01.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 5 Perturbation of tasiRNA Biogenesis Dampens Auxin Sensitivity (A) Model predictions for steady-state ARG transcript levels at increasing auxin concentrations for wild-type and Ppsgs3, normalized to wild-type levels at baseline auxin signaling input. X axis, value of auxin signaling input added to the baseline level in the model (see Supplemental Modeling Information). (B–G) Relative transcript levels (mean ± SE, n ≥ 3), normalized to wild-type grown on media without added NAA, for PpIAA1a (B), PpIAA1b (C), PpIAA2 (D), PpRSL1 (E), PpRSL5 (F), and PpRSL6 (G) in 15-day-old wild-type and Ppsgs3 plants grown on increasing NAA concentrations. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, Student's t test. (H–S) Caulonema occurrence on 15-day-old wild-type (H–M) and Ppsgs3 (N–S) plants grown on media supplemented with increasing concentrations of NAA. Dotted lines, protonemal regions lacking caulonema. Scale bar, 1 mm. Developmental Cell 2016 36, 276-289DOI: (10.1016/j.devcel.2016.01.010) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 6 Ppsgs3 Has a Decreased Sensitivity to Changes in Substratum Nitrogen Levels (A–L) Caulonema occurrence on 15-day-old wild-type (A–D), Ppsgs3 (E–H), and PpARFb4-GUS-m∗t∗ (I–L) plants grown on BCD media supplemented with decreasing concentrations of di-ammonium tartrate. Dotted line, protonemal regions lacking caulonema. Scale bar, 1 mm. (M–P) Gametophore distribution on 2-month-old soil-grown wild-type (M, N) and Ppsgs3 (O, P) plants. Dotted line, approximate edge of the main wild-type plant, represented by the circle in (N) and (P); asterisks, positions of gametophores away from the main plant's edge. Scale bar, 1 cm. Developmental Cell 2016 36, 276-289DOI: (10.1016/j.devcel.2016.01.010) Copyright © 2016 Elsevier Inc. Terms and Conditions