Multipole Limit Survey of FFQ and Large-beta Dipole

Slides:



Advertisements
Similar presentations
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
Advertisements

Accelerator Physics Issues Shekhar Mishra Sept 17-19, 1996 Main Injector DOE Review.
Y. Ohnishi / KEK KEKB-LER for ILC Damping Ring Study Simulation of low emittance lattice includes machine errors and optics corrections. Y. Ohnishi / KEK.
Emittance Growth from Elliptical Beams and Offset Collision at LHC and LRBB at RHIC Ji Qiang US LARP Workshop, Berkeley, April 26-28, 2006.
Dynamic Aperture Study for the Ion Ring Lattice Options Min-Huey Wang, Yuri Nosochkov MEIC Collaboration Meeting Fall 2015 Jefferson Lab, Newport News,
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
Vertical Emittance Tuning at the Australian Synchrotron Light Source Rohan Dowd Presented by Eugene Tan.
Compensation of Detector Solenoid G.H. Wei, V.S. Morozov, Fanglei Lin JLEIC Collaboration Meeting Spring, 2016.
Field Quality Specifications for Triplet Quadrupoles of the LHC Lattice v.3.01 Option 4444 and Collimation Study Yunhai Cai Y. Jiao, Y. Nosochkov, M-H.
Threading / LTC/ JW1 How difficult is threading at the LHC ? When MADX meets the control system … J. Wenninger AB-OP &
First evaluation of Dynamic Aperture at injection for FCC-hh
Optimization of the Collider rings’ optics
ILC DR Lower Horizontal Emittance, preliminary study
Alignment and beam-based correction
JLEIC simulations status April 3rd, 2017
ILC DR Lower Horizontal Emittance? -2
Optimization of Triplet Field Quality in Collision
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
Field quality to achieve the required lifetime goals (single beam)
First Look at Nonlinear Dynamics in the Electron Collider Ring
Optics Development for HE-LHC
FCC-ee Lattice with Misalignments
Electron collider ring Chromaticity Compensation and dynamic aperture
Nonlinear Dynamics and Error Study of the MEIC Ion Collider Ring
Error and Multipole Sensitivity Study for the Ion Collider Ring
Progress of SPPC lattice design
Specifications for the JLEIC IR Magnets
Collider Ring Optics & Related Issues
Simulation of the FCC-ee lattice with quadrupole and sextupole misalignments Sergey Sinyatkin.
Ion Collider Ring Chromatic Compensation and Dynamic Aperture
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
JLEIC Collider Rings’ Geometry Options
Progress on Non-linear Beam Dynamic Study
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
The Feasibility of Using RHIC Magnets for MEIC and Cost Impact
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Alternative Ion Injector Design
First Look at Error Sensitivity in MEIC
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Multipole Limit Survey of FFQ and Large-beta Dipole
G. Wei, V.S. Morozov, Fanglei Lin
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Update on MEIC Nonlinear Dynamics Work
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
Multipole Limit Survey of Large-beta Dipoles
Integration of Detector Solenoid into the JLEIC ion collider ring
Basic Error & Multipole Error for MEIC Ion Ring
Discussions on DA with tune scan
First results of proton spin tracking in a figure-8 ring
G. Wei, V.S. Morozov, Fanglei Lin MEIC R&D Meeting, JLab, Oct 27, 2015
Status of IR / Nonlinear Dynamics Studies
Possibility of MEIC Arc Cell Using PEP-II Dipole
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Arc FODO Cell Inventory
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Summary of JLEIC Electron Ring Nonlinear Dynamics Studies
Summary and Plan for Electron Polarization Study in the JLEIC
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
A TME-like Lattice for DA Studies
Error Sensitivity in MEIC
Compensation of Detector Solenoid Coherent Orbit Correction
Presentation transcript:

Multipole Limit Survey of FFQ and Large-beta Dipole G.H. Wei, V.S. Morozov, Fanglei Lin JLEIC Meeting, JLab, Dec 3, 2015 F. Lin

Contents Review Dynamic Aperture Shrinking is mainly caused by Multipoles of large-beta magnets, especially FFQ and top two large-beta dipoles Study Plan Multipole limit survey of large-beta dipoles Multipole limit survey of 6 FFQ Summary & Questions

One Lattice for JLEIC Ion Collider Ring Q S ALL 133 205 75 IR area 2 6 β> 200 m 21 19 8

Beam Size σx:10-6 σy:10-6

One Lattice for JLEIC Ion Collider Ring Δp/p=0 Δp/p= 0.3% Δp/p=-0.3% >70 σ of H & V

Error types Magnets: Super-Ferric dipole, Quads, Sextupole, corrector static errors : independent on time Misalignment, strength error of magnets; offset of BPM Multipole error of magnets (systematic error & random error) dynamic errors: dependent on time Noise signal of BPM Field jitter of magnets

Misalignment, strength error &correction Suggested by Uli Wienends: 3 times larger   Dipole Quadrupole Sextupole BPM(noise) Corrector x misalignment(mm) 0.3 0.3, FFQ0.03 0.02 - y misalignment(mm) x-y rotation(mrad) 0.3, FFQ0.05 s misalignment(mm) Strength error(%) 0.1 0.2, FFQ0.03 0.2 0.01

Misalignment, strength error &correction Closed orbit correction Beta-beat correction Tune correction Chromaticity correction Decoupling

Dynamic Aperture after Correction Without error After Correction Δp/p=0 Δp/p= 0.3% Δp/p=-0.3% All seeds: Δp/p=0 >70 σ of H & V ~50 σ of H & V

Multipoles of Super-Ferric dipole Peter McIntyre MEIC Fall 2015

Multipoles of Super-Ferric dipole 100 GeV ΔBn is the field due to order of n B0 is the main dipole field Multipole errors of super-ferric dipole at radius 20 mm (unit: 10^-4) multipole type ∆ 𝐵 1 𝐵 0 ∆ 𝐵 2 𝐵 0 ∆ 𝐵 3 𝐵 0 ∆ 𝐵 4 𝐵 0 ∆ 𝐵 5 𝐵 0 ∆ 𝐵 6 𝐵 0 ∆ 𝐵 7 𝐵 0 ∆ 𝐵 8 𝐵 0 ∆ 𝐵 9 𝐵 0 ∆ 𝐵 10 𝐵 0 systematic -0.151 -0.537 0.126 0.850 0.714 0.366 -0.464 -0.410 0.009 0.027 Random  

Multipoles of Super-Ferric dipole 100 GeV Without error Multipole all Δp/p=0 Δp/p= 0.3% Δp/p=-0.3% Multipole 1 Multipole 2 Multipole 3

Multipoles of Super-Ferric dipole 100 GeV 10 sigma H & V (1.8, 0.36) e-4 Multipole 7 Multipole 3-8 Multipole 8

Multipoles except 2 β>1km dipole > 20 σ of H & V: 2*(1.8, 0.36) e-4

Multipoles except dipoles of β > 200m ~50 σ of H & V: 5*(1.8, 0.36) e-4

multipoles of Super-Ferric dipole SC + dp/p SC + FFQ + Q SC + Q SC + FFQ

A limit comes from injection For Proton: σ > 5.5 times For ion: Even Larger

Study Plan The main short-term goal is to provide specifications for SF magnets. Updated suggested plan of work: Apply systematic multipoles only (ignore quadrupole multipole, no random multipoles and misalignments), provided by TAMU to all arc dipoles – Done Since there are no quadrupole data, set limits on systematic multipoles for quadrupoles (no random multipoles and misalignments): find range of each multipole reducing the DA to 20 for 3 groups of quads – In progress x,y > 1 km (mostly FFQs) 200 m < x,y < 1 km (mostly in chromaticity correction sections) x,y < 200 m (arc quads) Similarly set multipole limits for dipoles with x,y > 200 m (except quadrupole multipole) – In progress Compare to existing data from RHIC, LHC, etc. Develop injection lattice and repeat steps 1-3 Include all systematic multipoles (except quadrupole) and check DA Study effect of each random multipole (including quadrupole) for the above groups of magnets (including all systematic multipoles except quadrupole), e.g. find each multipole rms value that on average reduces DA to 15  Include systematic (except quadrupole) and random multipoles for all magnets using the limits obtained above and check the DA Include misalignments and strengths errors and apply orbit, beta-beat, betatron tune, chromaticity, and coupling corrections

Multipole limit survey of large-beta dipoles Multipoles Normal: Systematic + Random Skew: Systematic + Random

Multipole limit survey of large-beta dipoles 3 4 5 20 σ of H & V: 2*(2.32, 0.46) e-4 @ 60 GeV 6 7 8

Multipole limit survey of large-beta dipoles ++++++++ -------- < 20 σ of H & V: 2*(2.32, 0.46) e-4 @ 60 GeV

Multipole limit survey of large-beta dipoles 3 4 5 ~35 σ of H & V: 3.5*(2.32, 0.46) e-4 @ 60 GeV 6 7 8

Multipole limit survey of large-beta dipoles ++++++++ -------- For all dipole 20 σ of H & V: 2*(2.32, 0.46) e-4 @ 60 GeV -+-+-+-+ +-+-+-+-

Multipole limit survey of large-beta dipoles Multipole errors of super-ferric dipole at radius 20 mm (unit: 10^-4) multipole type ∆ 𝐵 1 𝐵 0 ∆ 𝐵 2 𝐵 0 ∆ 𝐵 3 𝐵 0 ∆ 𝐵 4 𝐵 0 ∆ 𝐵 5 𝐵 0 ∆ 𝐵 6 𝐵 0 ∆ 𝐵 7 𝐵 0 ∆ 𝐵 8 𝐵 0 ∆ 𝐵 9 𝐵 0 ∆ 𝐵 10 𝐵 0 systematic -0.151 -0.537 0.126 0.850 0.714 0.366 -0.464 -0.410 0.009 0.027 35sigma-plus 1.671E-01 3.193E-02 1.116E-02 1.750E-03 8.294E-04 1.054E-04 35sigma-minus 2.156E-01 2.810E-02 1.891E-02 1.494E-03 9.177E-05

Multipole limit survey of FFQ 2 3 4 ~35 σ of H & V: 3.5*(2.32, 0.46) e-4 @ 60 GeV 5 6 7

Multipole limit survey of FFQ 8 9 10 ~35 σ of H & V: 3.5*(2.32, 0.46) e-4 @ 60 GeV 11 12 13

Multipole limit survey of large-beta dipoles ++++++++ -------- 20 σ of H & V: 2*(2.32, 0.46) e-4 @ 60 GeV -+-+-+-+ +-+-+-+-

Multipole limit survey of FFQ Multipole errors of super-ferric dipole at radius 43.41 mm (unit: 1) multipole type ∆ 𝐵 1 𝐵 1 ∆ 𝐵 2 𝐵 1 ∆ 𝐵 3 𝐵 1 ∆ 𝐵 4 𝐵 1 ∆ 𝐵 5 𝐵 1 ∆ 𝐵 6 𝐵 1 ∆ 𝐵 7 𝐵 1 ∆ 𝐵 8 𝐵 1 ∆ 𝐵 9 𝐵 1 ∆ 𝐵 10 𝐵 1 PEP-II FFQ -5.14 E-06 -1.51 E-05 3.44 -2.72 -1.96 1.31 -1.24 6.79 -1.26 35sigma-plus 6.70 E-04 6.56 1.98 7.12 1.45 8.33 E-07 1.28 8.69 E-08 1.22 35sigma-minus -3.80 -8.60 -1.75 -1.03 -1.28 -8.43 -1.11 -8.06 -1.09 Multipole errors of super-ferric dipole at radius 43.41 mm (unit: 10^-4) multipole type ∆ 𝐵 11 𝐵 1 ∆ 𝐵 12 𝐵 1 ∆ 𝐵 13 𝐵 1 PEP-II FFQ -4.69 E-07 -1.22 E-06 -1.42 35sigma-plus 9.97 E-09 1.26 8.65 E-10 35sigma-minus -8.40 -1.13 -3.94

Summary Multipole Limit Survey is studied for systematic multipole of FFQ and large beta dipole. Some of them seems too small, even 2~3 order smaller than Super-Ferric Data and PEP-II FFQ Data. Multipole Limit Survey is based on emittance requirement, survey method, Lattice, and tune etc, which are also need to be modified.

Summary Work next: Survey whether a sextupole in the middle of a dipole is needed or not Survey for magnet multipole data of LHC, RHIC, and Tevatron. Finish the study plan of Multipole study

Thank you F. Lin

LHC

LHC

Tune correction Tune correction (Tune measurement error < 0.001) Tune error : < 0.1 % PC data Beam Time Gene-rator Kicker Pulse Mode Pulse

Beta-beat correction Beta-beat correction: beta measurement Fermilab Recycler Ring, Mar.2000 LHC: 2008; J-PARC: 2008

Beta-beat correction Beta-beat correction: beta measurement Beta error at IP & Beta > 500 : < 1 % Beta error at Beta < 500 : < 5 %

Beta-beat correction Beta-beat correction: Matrix corrction (-I or SVD method) This moment, I just use simple matching.

Chromaticity correction Linear Chromaticity (+1, +1) W function at IP = (0, 0)

Decoupling We can calculate the off-diagonal terms of The optimum positions for four coupling correctors are at .