Electron Ring IP Region Optics

Slides:



Advertisements
Similar presentations
1 EIC Users Meeting, Stony Brook June 27, 2014 Request for these slides: Comment on “EIC working group activities at Jefferson Lab, and how people could.
Advertisements

Full-Acceptance Detector Integration at MEIC Vasiliy Morozov for MEIC Study Group Electron Ion Collider Users Meeting, Stony Brook University June 27,
Ion Collider Ring Design V.S. Morozov for MEIC study group MEIC Collaboration Meeting, JLab October 5-7, 2015.
Overview of IR Design V.S. Morozov 1, P. Brindza 1, A. Camsonne 1, Ya.S. Derbenev 1, R. Ent 1, D. Gaskell 1, F. Lin 1, P. Nadel-Turonski 1, M. Ungaro 1,
MEIC Detector and IR Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
IR-Design 0.44 m Q5 D5 Q4 90 m 10 mrad m 3.67 mrad 60 m m 18.8 m 16.8 m 6.33 mrad 4 m Dipole © D.Trbojevic 30 GeV e GeV p.
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Detector / Interaction Region Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski Joint CASA/Accelerator and Nuclear Physics MEIC/ELIC Meeting.
Full-Acceptance & 2 nd Detector Region Designs V.S. Morozov on behalf of the JLEIC detector study group JLEIC Collaboration Meeting, JLab March 29-31,
Interaction Region and Detector
MEIC Interaction Region & Tagging
JLEIC Forward Ion Detection Region
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
Final Focus Synchrotron Radiation
Space Charge Effect Simulation Using DA Based FMM and Electron Cooling Simulation for JLab’s MEIC Project.
Forward (ion-SIDE) Tagging: Motivations, ConCepT, Performance
Error and Multipole Sensitivity Study for the Ion Collider Ring
A brief Introduction of eRHIC
Specifications for the JLEIC IR Magnets
Ion-Side Small Angle Detection Forward, Far-Forward, & Ultra-Forward
Collider Ring Optics & Related Issues
Update on JLEIC Interaction Region Design
IR Magnet Layout/Design - JLEIC
Low Energy Electron-Ion Collision
JLEIC Engineering Status
Progress on Non-linear Beam Dynamic Study
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Path Length Chicane Options
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
MEIC New Baseline: Luminosity Performance and Upgrade Path
Feasibility of Recuperation of Magnets in Decommissioned Storage Rings
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
IR Magnet Design and Engineering Considerations
JLEIC High-Energy Ion IR Design: Options and Performance
The MEIC electron ring as the large ion booster
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Status and plans for crab crossing studies at JLEIC
Alternative Ion Injector Design
First Look at Error Sensitivity in MEIC
Update on JLEIC Electron Ring Design
Multipole Limit Survey of FFQ and Large-beta Dipole
G. Wei, V.S. Morozov, Fanglei Lin
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov, M-H. Wang (SLAC)
Conventional Synchronization Schemes
Some of the Points Raised During my JLAB Visit
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
Multipole Limit Survey of Large-beta Dipoles
Integration of Detector Solenoid into the JLEIC ion collider ring
Basic Error & Multipole Error for MEIC Ion Ring
Discussions on DA with tune scan
MEIC Alternative Design Part V
G. Wei, V.S. Morozov, Fanglei Lin MEIC R&D Meeting, JLab, Oct 27, 2015
Possibility of MEIC Arc Cell Using PEP-II Dipole
More on MEIC Beam Synchronization
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
Summary and Plan for Electron Polarization Study in the JLEIC
Error Sensitivity in MEIC
Option 1: 2257 m Electron Ring with Doglegs – Downstream of IP
Compensation of Detector Solenoid Coherent Orbit Correction
Option 1: Reduced FF Quad Apertures
Illustrations of Beam Synchronization Issue
Presentation transcript:

Electron Ring IP Region Optics Fanglei Lin MEIC R&D Meeting, JLab, February 12, 2015 F. Lin

New Detector Region ion e- 1.6 m 1.4 m 2.4 m 3 m 2.6 m e- ion Endcap 5 m Central detector IP Electron ring FFQs (permanent and electric quads) can be placed in the two endcaps.

Baseline Upstream FFQs (@ 10 GeV) Max. x= 7 mm *=(10,2)cm 3 m e- 0.5 m elec. 29 T/m, rinner = 2 cm, router = 9 cm 1 m ion spectrometer  0.5 m, perm., 30 T/m, rinner = 2 cm, router = 3 cm x= 4 mm x= 2.4 mm 0.5 m elec. 41 T/m, rinner = 4 cm, router = 11 cm

New Upstream FFQs (@ 10 GeV)  2.4 m 0.5 m elec. 43 T/m, rinner = 5 cm, router = 10 cm 1 m ion spectrometer 0.5 m, perm., 28 T/m, rinner = 2 cm, router = 2.7 cm 0.5 m, perm., 35 T/m, rinner = 2 cm, router = 3 cm Max. x = 4.2 mm *=(10,2)cm x= 1.9 mm Max. y = 3 mm 0.5 m elec. 37 T/m, rinner = 3 cm, router= 6 cm

Baseline Downstream FFQs (@ 10 GeV)  3.2 m 0.6 m, elec., 48 T/m 0.3 m, perm., 0 T/m *=(10,2)cm 1.5 m Max. x= 4.9 mm 0.4 m, elec., 62 T/m 0.3 m, elec., 29 T/m 7.8 m

New Downstream FFQs (@ 10 GeV) 0.7 m, elec., 62 T/m, rinner = 4 cm 0.5 m, perm., 39 T/m, rinner = 2.5 or 3 cm, router = 4.8 or 7 cm ~ 8 cm separation of ion and e- beams OR 0.5 m, elec. quad shared by two beams e-  2.2m 1.6 m 7.8 m *=(10,2)cm Max. x = 3.1 mm x = 1.2 mm Max. y = 2.3 mm 0.7 m, elec., 41 T/m, , rinner = 8 cm 0.5 m, elec., 8 T/m, , rinner = 8 cm Outer radii are limited by the beam separation

Downstream FFQs + Chicane Baseline New

Back Up

“Round” Beam Upstream FFQs (@ 10 GeV) 0.5 m elec. 16 T/m 1 m ion spectrometer  0.7 m, perm., 44 T/m, rinner = 2 cm, router = 3.5 cm 0.7 m, perm., 45 T/m, rinner = 3 cm, router = 9 cm Max. x= 4.1 mm *=(10,2)cm x= 2.1 mm

“Round” Beam Downstream FFQs (@ 10 GeV) 0.7, 0.7, 0.5 m elec. 55, 41, 7 T/m 0.5 m, perm., 19 T/m, rinner = 3 cm, router = 4 cm e-  2.2m 1.6 m 7.8 m *=(10,2)cm Max. x = 3.8 mm x = 1.2 mm

Baseline Round beam Flat beam Or