Structure of the Oxygen Sensor in Bacillus subtilis

Slides:



Advertisements
Similar presentations
Volume 28, Issue 4, Pages (November 2007)
Advertisements

Volume 10, Issue 8, Pages (August 2002)
Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI  Gregory R. Hoffman, Nicolas Nassar, Richard.
Volume 95, Issue 7, Pages (December 1998)
Crystal Structure of the Tandem Phosphatase Domains of RPTP LAR
Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine  Snezana Djordjevic,
Structural Basis for the Highly Selective Inhibition of MMP-13
Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor HveA
Structure and Protein Design of a Human Platelet Function Inhibitor
Volume 3, Issue 1, Pages (January 1995)
Volume 8, Issue 3, Pages (September 2001)
Ping Wang, Katelyn A. Doxtader, Yunsun Nam  Molecular Cell 
Conformational Changes of the Flavivirus E Glycoprotein
Crystallographic Structure of SurA, a Molecular Chaperone that Facilitates Folding of Outer Membrane Porins  Eduard Bitto, David B. McKay  Structure 
Crystal Structure of M. tuberculosis ABC Phosphate Transport Receptor
Volume 11, Issue 2, Pages (February 2003)
Volume 6, Issue 10, Pages (October 1998)
Transmembrane Signaling across the Ligand-Gated FhuA Receptor
The crystal structure of bovine bile salt activated lipase: insights into the bile salt activation mechanism  Xiaoqiang Wang, Chi-sun Wang, Jordan Tang,
Volume 5, Issue 1, Pages (January 1997)
Encapsulating Streptomycin within a Small 40-mer RNA
Volume 124, Issue 2, Pages (January 2006)
Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases  Yingwu Xu, Girija Bhargava, Hao Wu,
Structure of RGS4 Bound to AlF4−-Activated Giα1: Stabilization of the Transition State for GTP Hydrolysis  John J.G. Tesmer, David M. Berman, Alfred G.
Volume 8, Issue 2, Pages (August 2001)
Volume 34, Issue 4, Pages (May 2009)
Volume 10, Issue 12, Pages (December 2002)
Volume 28, Issue 4, Pages (November 2007)
Volume 90, Issue 4, Pages (August 1997)
Molecular Basis of Lysosomal Enzyme Recognition: Three-Dimensional Structure of the Cation-Dependent Mannose 6-Phosphate Receptor  David L Roberts, Daniel.
Volume 4, Issue 11, Pages (November 1996)
Volume 11, Issue 5, Pages (May 2003)
Volume 11, Issue 1, Pages (January 2003)
N Khazanovich, KS Bateman, M Chernaia, M Michalak, MNG James  Structure 
Volume 4, Issue 5, Pages (November 1999)
Hong Ye, Young Chul Park, Mara Kreishman, Elliott Kieff, Hao Wu 
The 1.9 Å Structure of α-N-Acetylgalactosaminidase
Crystal Structure of Recombinant Human Interleukin-22
Structural Analysis of Ligand Stimulation of the Histidine Kinase NarX
Andrew H. Huber, W.James Nelson, William I. Weis  Cell 
Volume 90, Issue 1, Pages (July 1997)
Volume 96, Issue 7, Pages (April 2009)
Volume 9, Issue 8, Pages (August 2001)
Daniel Peisach, Patricia Gee, Claudia Kent, Zhaohui Xu  Structure 
Crystal Structure of Carnitine Acetyltransferase and Implications for the Catalytic Mechanism and Fatty Acid Transport  Gerwald Jogl, Liang Tong  Cell 
Crystallographic Analysis of the Recognition of a Nuclear Localization Signal by the Nuclear Import Factor Karyopherin α  Elena Conti, Marc Uy, Lore Leighton,
Structural Basis for the Highly Selective Inhibition of MMP-13
The structure of an RNA dodecamer shows how tandem U–U base pairs increase the range of stable RNA structures and the diversity of recognition sites 
Volume 101, Issue 4, Pages (May 2000)
Volume 91, Issue 7, Pages (December 1997)
Masaru Goto, Rie Omi, Noriko Nakagawa, Ikuko Miyahara, Ken Hirotsu 
Transformation of MutL by ATP Binding and Hydrolysis
Structural Basis for FGF Receptor Dimerization and Activation
Silvia Onesti, Andrew D Miller, Peter Brick  Structure 
Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI  Gregory R. Hoffman, Nicolas Nassar, Richard.
Volume 52, Issue 3, Pages (November 2013)
Volume 11, Issue 4, Pages (April 2003)
Volume 85, Issue 5, Pages (May 1996)
Neali Armstrong, Eric Gouaux  Neuron 
Ying Huang, Michael P. Myers, Rui-Ming Xu  Structure 
Crystal Structure of a Polymeric Immunoglobulin Binding Fragment of the Human Polymeric Immunoglobulin Receptor  Agnes E. Hamburger, Anthony P. West,
Volume 5, Issue 10, Pages (October 1997)
Volume 87, Issue 7, Pages (December 1996)
Jia-Wei Wu, Amy E. Cocina, Jijie Chai, Bruce A. Hay, Yigong Shi 
Volume 6, Issue 8, Pages (August 1998)
Volume 13, Issue 5, Pages (May 2005)
Pingwei Li, Gerry McDermott, Roland K. Strong  Immunity 
Luc Bousset, Hassan Belrhali, Joël Janin, Ronald Melki, Solange Morera 
Crystal Structure of the Human Neuropilin-1 b1 Domain
Stanley J Watowich, John J Skehel, Don C Wiley  Structure 
Presentation transcript:

Structure of the Oxygen Sensor in Bacillus subtilis Wei Zhang, George N Phillips  Structure  Volume 11, Issue 9, Pages 1097-1110 (September 2003) DOI: 10.1016/S0969-2126(03)00169-2

Figure 1 The Molecular Structure of the HemAT Sensor Domain Represented with Ribbon Diagrams (A) Stereo view of the structure. The signaling domain would be located further down on the page. (B) Top view showing the flanking of the core helices, G and H, by the rest of the molecule. The helices are labeled corresponding to the nomenclature of the globin fold. Subunit A, cyan; subunit B, yellow. Structure 2003 11, 1097-1110DOI: (10.1016/S0969-2126(03)00169-2)

Figure 2 The Structure-Based Sequence Alignment of Sperm Whale Myoglobin (Mb_Sw), the HemAT Sensor Domain (HemAT_Bs), and Hemoglobin from Vitreoscilla stercoraria (Hb_Vs) (A) Ribbon diagrams of the three proteins in their monomeric forms and the nomenclature for the helical segments in each structure. The helical arrangement in the HemAT sensor domain is Z, A, B, C, E, F, G, and H. (B) Alignment of three amino acid sequences on the basis of their structures. Secondary structures are shown at the bottom. Identical residues between all three sequences, green; identical residues between two sequences, yellow. Similar residues are colored in cyan. The critical distal pocket Tyr and His residues and the proximal pocket His residues are shown in red letters. Structure 2003 11, 1097-1110DOI: (10.1016/S0969-2126(03)00169-2)

Figure 3 Error-Scaled Difference Distance Matrix (DDM) Plots of the HemAT Sensor Domain (A) DDM plot of subunit A versus subunit B within the liganded structure. (B) DDM plot of subunit A versus subunit B within the unliganded structure. The result shows that there is less dimeric symmetry in the unliganded structure. (C) DDM plot of the liganded versus unliganded structures. The changes in distances smaller than 0.7 Å are omitted. The color gradient indicates differences between 0.7 Å and 1.4 Å, where red represents expansion and blue represents contraction. The results show more-dramatic changes in subunit B, representing asymmetrical effects of the ligand departure. Structure 2003 11, 1097-1110DOI: (10.1016/S0969-2126(03)00169-2)

Figure 4 Ca Trace of the G and H Helices at the Dimerization Interface The unliganded structure, green; the liganded structure, yellow. These difference vectors for the G and H helices are shown in red arrows with a threshold of 0.25 Å. (A) Stereograph of side view of the helices. (B) Stereo view looking down into the cell. (C) Schematic representation of helical motions. Left, the averaged difference vectors projected onto a line parallel to the H helices. Right, the same vectors projected onto a plane perpendicular to these helices. Helices of subunit A (GA and HA), yellow; those of subunit B (GB and HB), green. The numerical values for each helix are shown with the estimated standard deviation (0.04 Å) for these helices based on error propagation of individual coordinate errors. Structure 2003 11, 1097-1110DOI: (10.1016/S0969-2126(03)00169-2)

Figure 5 Superposition of the Ligand Binding Sites of the Unliganded and Liganded Structures The unliganded structure, green; the liganded structure, yellow. (A) Left, side view of superposition of A sites; right, top view of A sites. (B) Left, side view of superposition of B sites; right, top view of B sites. The results show the dramatic motion of Tyr70 and the heme in the B subunit. (C) Left, electron density map of the B subunit of the liganded structure contoured at a level of 1 σ; dashed lines represent hydrogen bonds. Right, electron density map of the B subunit of the unliganded structure contoured at a level of 0.7 σ. Structure 2003 11, 1097-1110DOI: (10.1016/S0969-2126(03)00169-2)

Figure 6 Comparison of the Distal Pockets of the Liganded HemAT Sensor Domain and Sperm Whale Myoglobin (A) The distal pocket of the liganded HemAT sensor domain. (B) The distal pocket of the liganded sperm whale myoglobin. The result shows the deeper encapsulation of the heme in the sensor domain of HemAT. Structure 2003 11, 1097-1110DOI: (10.1016/S0969-2126(03)00169-2)

Figure 7 A Model of the Four Known Types of Chemoreceptors Found in B. subtilis Type 1, purple; type 2, green; type 3, cyan; type 4, yellow. The lipid bilayer, blue and gray. The cytoplasmic domain of B. subtilis proteins is about 300 Å long, which is 40 Å longer than the cytoplasmic domain of E. coli chemoreceptors. (A) Side view of these chemoreceptors. (B) Bottom-up view from cytoplasm to periplasmic space showing how the type 4 chemoreceptors are likely to be arranged in the planar network of other receptors. Structure 2003 11, 1097-1110DOI: (10.1016/S0969-2126(03)00169-2)