Solving Trig Equations.

Slides:



Advertisements
Similar presentations
13.6 – The Tangent Function. The Tangent Function Use a calculator to find the sine and cosine of each value of . Then calculate the ratio. 1. radians2.30.
Advertisements

Trigonometric Ratios of Any Angle © P. A. Hunt
Trigonometric equations
Grade 10 Mathematics Trigonometric functions.
Compound Angle Formulae 1. Addition Formulae Example:
Graphs of the Trig Functions Objective To use the graphs of the trigonometric functions.
4.7 Inverse Trig Functions. By the end of today, we will learn about….. Inverse Sine Function Inverse Cosine and Tangent Functions Composing Trigonometric.
Quadratic and Trig Graphs
COVER PAGE Basic Trig Review Name________________ Student ID____________.
Simple Trigonometric Equations The sine graph below illustrates that there are many solutions to the trigonometric equation sin x = 0.5.
EXAMPLE 1 Evaluate trigonometric functions given a point Let (–4, 3) be a point on the terminal side of an angle θ in standard position. Evaluate the six.
5.4 Equations and Graphs of Trigonometric Functions
Warm-Up Write the sin, cos, and tan of angle A. A BC
Chapter 11 Trigonometric Functions 11.1 Trigonometric Ratios and General Angles 11.2 Trigonometric Ratios of Any Angles 11.3 Graphs of Sine, Cosine and.
Section 7-3 The Sine and Cosine Functions Objective: To use the definition of sine and cosine to find values of these functions and to solve simple trigonometric.
Graphs of the form y = a sin x o Nat 5 Graphs of the form y = a sin bx o Phase angle Solving Trig Equations Special trig relationships Trigonometric Functions.
Translations of Trigonometric Graphs LESSON 12–8.
Specialist Maths Calculus Week 3. Theorem P Q R T Proof.
7/9/ : Extending the Trig Ratios Expectation: G1.3.3: Determine the exact values of sine, cosine, and tangent for 0°, 30°, 45°, 60°, and their integer.
Section 8-5 Solving More Difficult Trigonometric Functions.
MCR 3U Final Exam Review: Trigonometric Functions Special Angles.
Copyright © by Holt, Rinehart and Winston. All Rights Reserved. Warm up 1. Solve the triangle 10.3 Extending the Trigonometric Ratios A 12 C 15 c B.
y = | a | • f (x) by horizontal and vertical translations
13-4 The Sine Function Hubarth Algebra II.
1.9 Inverse Trig Functions Obj: Graph Inverse Trig Functions
Trigonometry Graphs Graphs of the form y = a sin xo
S4 Credit Exact values for Sin Cos and Tan Angles greater than 90o
Trigonometric Graphs 6.2.
Trigonometric Graphs Period = 3600 Amplitude = 1
WARM UP Use special triangles to evaluate:.
Sine Function 1 Max value 1 when x = 90o Mini value -1 when x = 270o 1
Aim: What are the graphs of tangent function and reciprocal functions?
Objectives: Students will learn how to find Cos, Sin & Tan using the special right triangles.
Concept.
TRIGONOMETRIC EQUATIONS
U9L5: Graphing Trigonometric Functions
Trigonometric Graphs 1.6 Day 1.
FLASH! Fredda Wyatt 01/2009.
Trigonometric Equations with Multiple Angles
LESSON ____ SECTION 4.2 The Unit Circle.
Graphing Trigonometric Functions
Amplitude, Period, and Phase Shift
TRIGONOMETRIC GRAPHS.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Amplitude, Period, & Phase Shift
Trigonometric Graphs L.O.
Graphs of Trigonometric Functions
Splash Screen.
Warm Up Write answers in reduced pi form.
Unit 7C Review.
Graphing Solutions of Trig Functions
Aim: What are the graphs of tangent function and reciprocal functions?
Section 3.5 Cosecant Secant and Cotangent Functions
Section 3.3 Graphing Sine Cosine and Tangent Functions
pencil, highlighter, calculator, red pen, assignment
sin x cos x tan x 360o 90o 180o 270o 360o 360o 180o 90o C A S T 0o
Review these 1.) cos-1 √3/ ) sin-1-√2/2 3.) tan -1 -√ ) cos-1 -1/2
Warm Up 30°±
Trigonometric Functions
ALWAYS work with 1st Quad then translate
8.1 Graphical Solutions to Trig. Equations
Graphical Solutions of Trigonometric Equations
Graphs of Trigonometric Functions
6.4 - Trig Ratios in the Coordinate Plane
Analytic Trigonometry
7.3 Sum and Difference Identities
8.3 – Model Periodic Behavior
Section – Linear Programming
Solving Trig Equations.
Drawing Trigonometric Graphs.
Presentation transcript:

Solving Trig Equations

Graph of y = sin x y = sin x Max sin x = 1 when x = 90° Min sin x = -1 when x = 270°

Graph of y = cos x y = cos x Max cos x = 1 when x = 0° or 360° Min cos x = -1 when x = 180°

Graph of y = tan x These lines are called asymptotes and show that tan xo is undefined for 90o and 270o The graph of y = tan xo has no maximum or minimum values

A S T C +ve +ve +ve +ve –ve –ve –ve –ve Splitting each graph into 90o sections, shows that each has two positive and two negative sections 90o +ve +ve A S sin all 180o 0o 360o –ve –ve T C tan cos All Sinners Take Care 270o

The diagram shows where the various ratios are positive 90° 90° to 180° sin positive 0° to 90° all positive S A 180 - 180° 0°,360° 180 + C 360 - T 180° to 270° tan positive 270° to 360° cos positive 270°

Solve the following equations, giving two values for x between 0° and 360°. cos x° = 0·085 tan x° = 0·510 +ve -ve Ignore sign 90o A  S  A S 0o 180o 0o 180o 360o  360o T C  T C 270o 270o

Trigonometric Equations Solve the following equations, giving two values for x between 0° and 360°. sin x° = 0·766 cos x° = 0·565 tan x° = 4·915 cos x° = 0·906 sin x° = 0·707 tan x° = 2·050 sin x° = 0·415 tan x° = 0·193

Trigonometric Equations Solutions sin x° = 0·766 x = 50·0 or 130·0 cos x° = 0·565 x = 55·6 or 304·4 tan x° = 4·915 x = 78·5 or 258·5 cos x° = 0·906 x = 155·0 or 205·0 sin x° = 0·707 x = 225·0 or 315·0 tan x° = 2·050 x = 116·0 or 296·0 sin x° = 0·415 x = 24·5 or 155·5 tan x° = 0·193 x = 10·9 or 190·9

Solve the following equations, giving two values for x between 0° and 360°. 3sin x°  1 = 0 2tan x° + 5 = 1 2tan xo = – 4 3sin xo = 1 tan xo = – 2 sin xo = 1 ÷ 3 = 0∙333 tan-1 2 = 63∙4o A 0o 180o 270o 360o S T C 90o sin-1 0∙333 = 19∙5o    x = 180 – 63∙4o x = 19∙5o x = 116∙6o  x = 180 – 19∙5o x = 360 – 63∙4o x = 160∙5o x = 296∙6o

Trigonometric Equations Solve the following equations, giving two values for x between 0° and 360°. 4cos x°  2 = 0 5tan x°  12 = 0 5sin x° + 4 = 0 4cos x° + 3 = 0 3tan x° + 2 = 1 2tan x° - 5 = 0

4cos x°  2 = 0 cos x° = 2  4 = 0·5 x = 60 or 300 5sin x° + 4 = 0 sin x° = 4  5 = 0·8 x = 233·1 or 306·9 3tan x° + 2 = 1 tan x° = 1  3 = 0·333. x = 161·6 or 341·6 5tan x°  12 = 0 tan x° = 12  5 = 2·4 x = 67·4 or 247·4 4cos x° + 3 = 0 cos x° = 3  4 = 0·75 x = 138·6 or 221·4 2tan x° - 5 = 0 tan xo = 5 ÷ 2 = 2∙5 x = 68∙2 or 248∙2

  The diagram shows part of the graph of y = 4cos x° and y = – 3 Find the coordinates of the points A and B A B (138·6, -3) (221·4, -3) A 0o 180o 270o 360o S T C 90o  Where the graphs intersect y = y  4cos xo = – 3   cos xo = – 3/4  x = 180 - 41·4o  cos-1 ¾ = 41·4o  x = 180 + 41·4o

The maximum value of the sine of any angle is 1 and the minimum – 1 Evaluating Trig Functions The height, h km, of a satellite above the earth after x hours is given by : h(x) = 800 + 40 sin (10x)o a) What are the maximum and minimum heights of the satellite? b) When do these maximum and minimum heights occur? c) What is the period of h? d) Draw a sketch of h(x) for 0 ≤ x ≤ 180 The maximum value of the sine of any angle is 1 and the minimum – 1 Max h(x) = 800 + 40 × 1 = 840 km Min h(x) = 800 + 40 × (– 1) = 760 km

Since all values repeat every 360o Max h(x) = 800 + 40 × 1 = 840 km Occurs when angle = 90o Min h(x) = 800 + 40 × (– 1) = 760 km Note: When 0 ≤ x ≤ 180, 0 ≤ 10x ≤ 1800 Max h(x) occurs when 10x = 90, 450, 810, 1170, …….. Since all values repeat every 360o Max h(x) occurs when x = 9 hrs, 45 hrs, 81 hrs, 117 hrs, ……..