Volume 112, Issue 3, Pages (February 2017)

Slides:



Advertisements
Similar presentations
Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli: Experiments and Stochastic Model  Pradeep Kumar, Albert Libchaber  Biophysical.
Advertisements

Volume 112, Issue 10, Pages (May 2017)
Volume 111, Issue 7, Pages (October 2016)
The State Diagram for Cell Adhesion Mediated by Two Receptors
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Rapid Assembly of a Multimeric Membrane Protein Pore
Precision and Variability in Bacterial Temperature Sensing
Volume 84, Issue 6, Pages (June 2003)
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Influence of Chain Length and Unsaturation on Sphingomyelin Bilayers
The Origin of Short Transcriptional Pauses
Volume 112, Issue 6, Pages (March 2017)
Dynamics of the Serine Chemoreceptor in the Escherichia coli Inner Membrane: A High- Speed Single-Molecule Tracking Study  Dongmyung Oh, Yang Yu, Hochan.
Phase Transitions in Biological Systems with Many Components
William Y.C. Huang, Han-Kuei Chiang, Jay T. Groves  Biophysical Journal 
Nathan L. Hendel, Matthew Thomson, Wallace F. Marshall 
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Volume 102, Issue 11, Pages (June 2012)
Volume 111, Issue 2, Pages (July 2016)
Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis  Pierre D.J. Moens, Michelle A. Digman,
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Edmond Chow, Jeffrey Skolnick  Biophysical Journal 
Jai A. Pathak, Rumi R. Sologuren, Rojaramani Narwal 
Volume 110, Issue 3, Pages (February 2016)
Volume 114, Issue 5, Pages (March 2018)
Volume 110, Issue 11, Pages (June 2016)
Quantifying Biomolecule Diffusivity Using an Optimal Bayesian Method
Volume 105, Issue 10, Pages (November 2013)
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
Volume 114, Issue 12, Pages (June 2018)
Phage DNA Dynamics in Cells with Different Fates
V.M. Burlakov, R. Taylor, J. Koerner, N. Emptage  Biophysical Journal 
Nathan L. Hendel, Matthew Thomson, Wallace F. Marshall 
A Model for the Transient Subdiffusive Behavior of Particles in Mucus
Azobenzene Photoisomerization-Induced Destabilization of B-DNA
Real-Time Nanopore-Based Recognition of Protein Translocation Success
Volume 107, Issue 8, Pages (October 2014)
Rapid Assembly of a Multimeric Membrane Protein Pore
Volume 96, Issue 5, Pages (March 2009)
Volume 109, Issue 3, Pages (August 2015)
Teuta Pilizota, Joshua W. Shaevitz  Biophysical Journal 
Hongqiang Ma, Jianquan Xu, Jingyi Jin, Yi Huang, Yang Liu 
Enhanced Tethered-Particle Motion Analysis Reveals Viscous Effects
Volume 110, Issue 1, Pages (January 2016)
Dynamics of Active Semiflexible Polymers
Physical Modeling of Dynamic Coupling between Chromosomal Loci
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Volume 106, Issue 10, Pages (May 2014)
Martin Kurylowicz, Ching-Hsing Yu, Régis Pomès  Biophysical Journal 
Mathematical Modeling of the Heat-Shock Response in HeLa Cells
Robust Driving Forces for Transmembrane Helix Packing
Effect of Grafting on Aggregation of Intrinsically Disordered Proteins
Volume 113, Issue 12, Pages (December 2017)
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
A Superresolution Census of RNA Polymerase
Maria Goiko, John R. de Bruyn, Bryan Heit  Biophysical Journal 
Volume 106, Issue 1, Pages (January 2014)
Volume 113, Issue 12, Pages (December 2017)
Volume 113, Issue 3, Pages (August 2017)
Inherent Force-Dependent Properties of β-Cardiac Myosin Contribute to the Force- Velocity Relationship of Cardiac Muscle  Michael J. Greenberg, Henry Shuman,
Volume 100, Issue 6, Pages (March 2011)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Systems Biophysics: Multiscale Biophysical Modeling of Organ Systems
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
Joana Pinto Vieira, Julien Racle, Vassily Hatzimanikatis 
Kinetic Folding Mechanism of Erythropoietin
Volume 98, Issue 3, Pages (February 2010)
Volume 106, Issue 8, Pages (April 2014)
Evolution of Specificity in Protein-Protein Interactions
Presentation transcript:

Volume 112, Issue 3, Pages 532-542 (February 2017) Cytoplasmic RNA-Protein Particles Exhibit Non-Gaussian Subdiffusive Behavior  Thomas J. Lampo, Stella Stylianidou, Mikael P. Backlund, Paul A. Wiggins, Andrew J. Spakowitz  Biophysical Journal  Volume 112, Issue 3, Pages 532-542 (February 2017) DOI: 10.1016/j.bpj.2016.11.3208 Copyright © 2017 Biophysical Society Terms and Conditions

Figure 1 RNA-protein particles exhibit ergodic subdiffusive behavior. (a) eMSD and (c) tMSD of RNA-protein particles in E. coli for particle position measurements taken at 1 s intervals (blue circles) and 1 min intervals (red triangles (14)) and corrected for drift due to cell growth using an affine expansion model (14). Ten example tMSD curves for individual trajectories are also shown (light-blue lines and magenta lines). (b) eMSD and (d) tMSD of RNA-protein particles in S. cerevisiae (32). Ten example tMSD curves for individual trajectories are also shown (light-blue lines). Error bars for standard error of the mean are smaller than the symbol sizes. To see this figure in color, go online. Biophysical Journal 2017 112, 532-542DOI: (10.1016/j.bpj.2016.11.3208) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 2 Displacement distributions of RNA-protein particles in E. coli. (a) Ensemble of 1D displacement (Δx) distributions over multiple timescales (δ) along the long axis of E. coli. (b) Ensemble of 1D displacement distributions (Δx and Δy combined) over multiple timescales (δ) in the S. cerevisiae cytoplasm. (c and d) Same as (a) and (b), but with each displacement distribution rescaled by its standard deviation σδ for direct comparison to Laplace and Gaussian distributions. Particle displacement measurements for E. coli are from two different data sets spanning 1–100 s used for δ = 1 s and 10 s (this study) and 1–136 min used for δ = 2 min and 17 min (from Stylianidou et al. (14)). Particle displacement measurements for S. cerevisiae are from a single data set spanning 0.015–45 s (from Thompson et al. (32)). To see this figure in color, go online. Biophysical Journal 2017 112, 532-542DOI: (10.1016/j.bpj.2016.11.3208) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 3 Diffusivity distributions of RNA-protein particles. The probability distribution of diffusivities normalized by their mean for E. coli and S. cerevisiae data sets. Diffusivities are calculated using a two-parameter fit of the individual time-averaged MSDs to a power law function over the time intervals indicated in the figure legend. To see this figure in color, go online. Biophysical Journal 2017 112, 532-542DOI: (10.1016/j.bpj.2016.11.3208) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 4 Standard deviation normalized displacement distribution of RNA-protein particles. (a and b) Displacement distributions over multiple timescales along the long axis of (a) E. coli and the pooled x and y displacements in (b) S. cerevisiae. Each individual trajectory is normalized by its standard deviation before being pooled into the ensemble distribution. Distributions are then made dimensionless by the overall standard deviation to show the parameter-free comparison of the normalized displacement, χδ, to the Gaussian and Laplace distributions. To see this figure in color, go online. Biophysical Journal 2017 112, 532-542DOI: (10.1016/j.bpj.2016.11.3208) Copyright © 2017 Biophysical Society Terms and Conditions

Figure 5 Diffusivity autocorrelation function of RNA-protein particles. (a and b) Diffusivity autocorrelation function CD(δ)(Δt) for different timescales of RNA-protein particle displacement measurements δ for (a) E. coli and (b) S. cerevisiae. To see this figure in color, go online. Biophysical Journal 2017 112, 532-542DOI: (10.1016/j.bpj.2016.11.3208) Copyright © 2017 Biophysical Society Terms and Conditions