The Complex Energy Landscape of the Protein IscU

Slides:



Advertisements
Similar presentations
How Do Thermophilic Proteins and Proteomes Withstand High Temperature? Lucas Sawle, Kingshuk Ghosh Biophysical Journal Volume 101, Issue 1, Pages
Advertisements

On the Thermodynamic Efficiency of Ca2+-ATPase Molecular Machines Anders Lervik, Fernando Bresme, Signe Kjelstrup, J. Miguel Rubí Biophysical Journal Volume.
Effects of Macromolecular Crowding on the Structure of a Protein Complex: A Small- Angle Scattering Study of Superoxide Dismutase Ajith Rajapaksha, Christopher.
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Volume 102, Issue 2, Pages L8-L10 (January 2012)
Kinetic Hysteresis in Collagen Folding
Volume 112, Issue 12, Pages (June 2017)
Volume 106, Issue 8, Pages (April 2014)
Volume 108, Issue 1, Pages (January 2015)
SAXS versus FRET: A Matter of Heterogeneity?
Volume 22, Issue 6, Pages (June 2014)
Volume 91, Issue 8, Pages (October 2006)
A Comprehensive Calorimetric Investigation of an Entropically Driven T Cell Receptor- Peptide/Major Histocompatibility Complex Interaction  Kathryn M.
On the Thermodynamic Efficiency of Ca2+-ATPase Molecular Machines
Volume 108, Issue 3, Pages (February 2015)
Volume 98, Issue 11, Pages (June 2010)
Volume 21, Issue 9, Pages (September 2013)
Andrés Jara-Oseguera, León D. Islas  Biophysical Journal 
Volume 18, Issue 11, Pages (November 2010)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
A Molecular Model for Lithium’s Bioactive Form
Volume 109, Issue 4, Pages (August 2015)
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
A Comprehensive Calorimetric Investigation of an Entropically Driven T Cell Receptor- Peptide/Major Histocompatibility Complex Interaction  Kathryn M.
Volume 98, Issue 1, Pages (January 2010)
Tae-Joon Park, Ji-Sun Kim, Hee-Chul Ahn, Yongae Kim 
Volume 108, Issue 6, Pages (March 2015)
Volume 86, Issue 4, Pages (April 2004)
Volume 9, Issue 4, Pages (November 2014)
Iftach Nir, Diana Huttner, Amit Meller  Biophysical Journal 
Volume 108, Issue 1, Pages (January 2015)
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Volume 108, Issue 6, Pages (March 2015)
Johannes Schöneberg, Martin Heck, Klaus Peter Hofmann, Frank Noé 
Volume 96, Issue 2, Pages (January 2009)
Volume 85, Issue 4, Pages (October 2003)
Volume 104, Issue 8, Pages (April 2013)
Volume 18, Issue 9, Pages (September 2010)
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Zhaoyong Xi, Matthew J. Whitley, Angela M. Gronenborn  Structure 
Dynamic Motions of the HIV-1 Frameshift Site RNA
SAXS-Oriented Ensemble Refinement of Flexible Biomolecules
Volume 10, Issue 5, Pages (May 2002)
Yusuke Nakasone, Kazunori Zikihara, Satoru Tokutomi, Masahide Terazima 
Quantifying the Interaction between EGFR Dimers and Grb2 in Live Cells
Kinetic Hysteresis in Collagen Folding
Cyclic N-Terminal Loop of Amylin Forms Non Amyloid Fibers
Volume 106, Issue 4, Pages (February 2014)
Volume 103, Issue 5, Pages (September 2012)
Congju Chen, Irina M. Russu  Biophysical Journal 
Subdomain Interactions Foster the Design of Two Protein Pairs with ∼80% Sequence Identity but Different Folds  Lauren L. Porter, Yanan He, Yihong Chen,
Dynamics of the BH3-Only Protein Binding Interface of Bcl-xL
Volume 108, Issue 11, Pages (June 2015)
Volume 97, Issue 8, Pages (October 2009)
Arnoldus W.P. Vermeer, Willem Norde  Biophysical Journal 
Volume 103, Issue 2, Pages (July 2012)
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Volume 111, Issue 11, Pages (December 2016)
Volume 106, Issue 5, Pages (March 2014)
Volume 110, Issue 11, Pages (June 2016)
Volume 102, Issue 1, Pages (January 2012)
Volume 109, Issue 7, Pages (October 2015)
Volume 114, Issue 4, Pages (February 2018)
Volume 99, Issue 1, Pages (July 2010)
Effects of Dextran Molecular Weight on Red Blood Cell Aggregation
Kinetic Folding Mechanism of Erythropoietin
Cotranslational Folding Increases GFP Folding Yield
A Delocalized Proton-Binding Site within a Membrane Protein
Volume 105, Issue 5, Pages (September 2013)
Volume 106, Issue 8, Pages (April 2014)
Presentation transcript:

The Complex Energy Landscape of the Protein IscU Jameson R. Bothe, Marco Tonelli, Ibrahim K. Ali, Ziqi Dai, Ronnie O. Frederick, William M. Westler, John L. Markley  Biophysical Journal  Volume 109, Issue 5, Pages 1019-1025 (September 2015) DOI: 10.1016/j.bpj.2015.07.045 Copyright © 2015 The Authors Terms and Conditions

Figure 1 Energetic landscape of IscU. (A) IscU exists in equilibrium between a structured (S) state (PDB ID: 24LX) (8) and a disordered (D) state. (B) Temperature dependence of the fraction of the protein molecules in the S state, ([S]/([S]+[D])), as determined from the relative intensities of NMR signals assigned to W76 (black circles) and K128 (red circles) in the two conformational states. The curves resulted from fitting each data set to the Gibbs-Helmholtz equation (Table 1). (C) DSC thermograms of IscU (black) and D39A IscU (red). Biophysical Journal 2015 109, 1019-1025DOI: (10.1016/j.bpj.2015.07.045) Copyright © 2015 The Authors Terms and Conditions

Figure 2 1H-15N HSQC spectra of IscU collected at the temperatures indicated, showing the collapse of the spectrum upon cooling or warming. Boxes highlight the resonances used to determine the S- and D-state populations for thermodynamic analysis (Fig. 1B). Biophysical Journal 2015 109, 1019-1025DOI: (10.1016/j.bpj.2015.07.045) Copyright © 2015 The Authors Terms and Conditions

Figure 3 Temperature-dependent SAXS studies of monomeric IscU prepared with 10 mM TCEP in an anaerobic chamber. (A) Rg values calculated from SAXS data collected at different temperatures. (B) Molecular mass of IscU as determined from SAXS data by the I(0) (black) and Vc (red) methods. The lines indicate the molecular masses of monomeric (13.8 kDa) and dimeric (27.7 kDa) IscU. Biophysical Journal 2015 109, 1019-1025DOI: (10.1016/j.bpj.2015.07.045) Copyright © 2015 The Authors Terms and Conditions

Figure 4 Low-resolution structural analysis of IscU by SAXS. (A) D-state Rg values calculated from experimental SAXS data using Eq. 1 (black) and from disordered structures selected from a two-state MES (red). (B) Rg values for members of the ensemble of structures used for the MES analysis. (C) Fractional S-state population derived from the conformers selected by the two-state MES fit (red) compared with that determined by NMR (black). Biophysical Journal 2015 109, 1019-1025DOI: (10.1016/j.bpj.2015.07.045) Copyright © 2015 The Authors Terms and Conditions

Figure 5 MES results for temperature-dependent IscU SAXS data. (A) Experimental SAXS data (circles) collected at different temperatures are compared with fits to MES against one structure (blue) and two structures (red). X and Xfree statistics are shown for the two-structure MES fits. For reference, the fit (green) to the single structure (Rg of 22 Å) selected for IscU at 25°C is shown for 1°C, 5°C, and 45°C. (B) Structures selected in the two-state MES fits to the experimental SAXS data at different temperatures. Biophysical Journal 2015 109, 1019-1025DOI: (10.1016/j.bpj.2015.07.045) Copyright © 2015 The Authors Terms and Conditions