Volume 8, Issue 1, Pages (January 2005)

Slides:



Advertisements
Similar presentations
A blood flow–dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos by Lu Wang,
Advertisements

Fate Mapping Embryonic Blood in Zebrafish: Multi- and Unipotential Lineages Are Segregated at Gastrulation  Rachel M. Warga, Donald A. Kane, Robert K.
Feng Liu, Maggie Walmsley, Adam Rodaway, Roger Patient  Current Biology 
The zebrafish udu gene encodes a novel nuclear factor and is essential for primitive erythroid cell development by Yanmei Liu, Linsen Du, Motomi Osato,
Volume 20, Issue 2, Pages (January 2010)
Leslie Dunipace, Abbie Saunders, Hilary L. Ashe, Angelike Stathopoulos 
Volume 17, Issue 4, Pages (October 2009)
by Alex Bukrinsky, Kevin J. P
by Jonathan M. Rowlinson, and Martin Gering
Volume 55, Issue 2, Pages (July 2007)
Karen Lunde, Heinz-Georg Belting, Wolfgang Driever  Current Biology 
Martin Gering, Roger Patient  Developmental Cell 
Volume 35, Issue 2, Pages (July 2002)
Volume 15, Issue 6, Pages (March 2005)
Hyunsook Lee, David Kimelman  Developmental Cell 
Benjamin L. Martin, David Kimelman  Developmental Cell 
Volume 10, Issue 9, Pages (May 2000)
Muscle Building Developmental Cell
Volume 14, Issue 2, Pages (February 2008)
Guozhu Ning, Xiuli Liu, Miaomiao Dai, Anming Meng, Qiang Wang 
Volume 8, Issue 4, Pages (April 2005)
Volume 7, Issue 1, Pages (July 2004)
Canonical Wnt Signaling Dynamically Controls Multiple Stem Cell Fate Decisions during Vertebrate Body Formation  Benjamin L. Martin, David Kimelman  Developmental.
Volume 16, Issue 6, Pages (June 2009)
Volume 12, Issue 7, Pages (August 2015)
A Crucial Interaction between Embryonic Red Blood Cell Progenitors and Paraxial Mesoderm Revealed in spadetail Embryos  Laurel A. Rohde, Andrew C. Oates,
Volume 10, Issue 1, Pages (January 2018)
Naoyuki Fuse, Kanako Hisata, Alisa L. Katzen, Fumio Matsuzaki 
Volume 1, Issue 1, Pages (July 2001)
BMP Signaling Protects Telencephalic Fate by Repressing Eye Identity and Its Cxcr4- Dependent Morphogenesis  Holger Bielen, Corinne Houart  Developmental.
Volume 24, Issue 2, Pages (January 2013)
Neuropeptides: Developmental Signals in Placode Progenitor Formation
Kathleen S. Christine, Frank L. Conlon  Developmental Cell 
A molecular pathway leading to endoderm formation in zebrafish
Volume 22, Issue 5, Pages (May 2012)
Benjamin L. Martin, David Kimelman  Developmental Cell 
Tbx5 and Tbx4 Are Not Sufficient to Determine Limb-Specific Morphologies but Have Common Roles in Initiating Limb Outgrowth  Carolina Minguillon, Jo Del.
Volume 20, Issue 21, Pages (November 2010)
Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway  Claire Chazaud, Yojiro Yamanaka,
Sonic hedgehog and vascular endothelial growth factor Act Upstream of the Notch Pathway during Arterial Endothelial Differentiation  Nathan D. Lawson,
The BMP Signaling Gradient Patterns Dorsoventral Tissues in a Temporally Progressive Manner along the Anteroposterior Axis  Jennifer A. Tucker, Keith.
Volume 16, Issue 5, Pages (March 2006)
The Chemokine SDF1a Coordinates Tissue Migration through the Spatially Restricted Activation of Cxcr7 and Cxcr4b  Guillaume Valentin, Petra Haas, Darren.
Volume 18, Issue 4, Pages (April 2010)
Volume 19, Issue 24, Pages (December 2009)
Zebrafish pea3 and erm are general targets of FGF8 signaling
Bmp2 Signaling Regulates the Hepatic versus Pancreatic Fate Decision
Di Jiang, Edwin M. Munro, William C. Smith  Current Biology 
Volume 139, Issue 3, Pages (October 2009)
Irf4 Regulates the Choice between T Lymphoid-Primed Progenitor and Myeloid Lineage Fates during Embryogenesis  Sifeng Wang, Qiuping He, Dongyuan Ma, Yuanyuan.
RPK1 and TOAD2 Are Two Receptor-like Kinases Redundantly Required for Arabidopsis Embryonic Pattern Formation  Michael D. Nodine, Ramin Yadegari, Frans.
Won-Suk Chung, Didier Y.R. Stainier  Developmental Cell 
Volume 2, Issue 1, Pages (July 2007)
Stefano De Renzis, J. Yu, R. Zinzen, Eric Wieschaus  Developmental Cell 
Julie E. Cooke, Hilary A. Kemp, Cecilia B. Moens  Current Biology 
Jeffrey D Amack, H.Joseph Yost  Current Biology 
Gfi1aa/1b do not mediate Npas4l/Cloche suppression in primitive red blood cells. Gfi1aa/1b do not mediate Npas4l/Cloche suppression in primitive red blood.
Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia  Zhiqiang Dong, Nan Yang, Sang-Yeob.
Volume 53, Issue 6, Pages (March 2007)
Volume 25, Issue 2, Pages (April 2013)
Temporally Regulated Asymmetric Neurogenesis Causes Left-Right Difference in the Zebrafish Habenular Structures  Hidenori Aizawa, Midori Goto, Tomomi.
Volume 47, Issue 1, Pages (July 2005)
Norihito Kishimoto, Ying Cao, Alice Park, Zhaoxia Sun 
Gfi1aa suppresses the endothelial gene expression program in primitive erythroblasts developing from the posterior lateral mesoderm. Gfi1aa suppresses.
Leukocyte infiltration of epidermis and phagocytosis of debris in clint1 mutants. Leukocyte infiltration of epidermis and phagocytosis of debris in clint1.
Volume 15, Issue 6, Pages (March 2005)
Gene Amplification as a Developmental Strategy
Morphogenetic Movements Underlying Eye Field Formation Require Interactions between the FGF and ephrinB1 Signaling Pathways  Kathryn B. Moore, Kathleen.
Volume 7, Issue 2, Pages (February 2001)
Volume 18, Issue 6, Pages (June 2010)
Presentation transcript:

Volume 8, Issue 1, Pages 97-108 (January 2005) Interplay of Pu.1 and Gata1 Determines Myelo-Erythroid Progenitor Cell Fate in Zebrafish  Jennifer Rhodes, Andreas Hagen, Karl Hsu, Min Deng, Ting Xi Liu, A.Thomas Look, John P. Kanki  Developmental Cell  Volume 8, Issue 1, Pages 97-108 (January 2005) DOI: 10.1016/j.devcel.2004.11.014

Figure 1 Movements of pu.1-Expressing Cells (A–D) ISH assays for pu.1 (p, arrow), krox20 (k, rhombomeres 3,5), and myoD (m, somites) expression. Dorsal views of flattened embryos, anterior to left, at (A) 7 somites, (B) 14 somites, (C) 15 somites, and (D) 18 somites. (E–G) Upper panels, dorsal views, anterior to left: live pu.1-GFP transgenic embryo is shown at (E) 13 hpf, (F) 15 hpf, and (G) 20 hpf. Lower panels: corresponding anterior views. (H) Confocal image of GFP+ cells (green) and pu.1 mRNA (red) in a 20 hpf transgenic embryo. Arrow indicates a yellow coexpressing cell. Developmental Cell 2005 8, 97-108DOI: (10.1016/j.devcel.2004.11.014)

Figure 2 Pu.1 Is Required for Myelopoiesis (A, B, E, F, I, J) Control or (C, D, G, H, K, L) Pu.1 morphants at 28 hpf. Double ISH assays for (A–D) pu.1 and nkx2.5 (arrowheads), (E–H) mpo and α-globin, (I–L) l-plastin and α-globin (blue and red, as indicated). Left panels: lateral views; right panels: dorsal views; anterior left. Developmental Cell 2005 8, 97-108DOI: (10.1016/j.devcel.2004.11.014)

Figure 3 Pu.1 Suppresses Erythroid Development (A, B, E, F, I, and K) Control morphants or (C, D, G, H, J, and L) Pu.1 morphants at (A–D) 21 hpf or (E–H, K, L) 24 hpf. Expression of (A–D) gata1 (blue), (E–H) l-plastin (blue), and (I–L) α-globin (red). Left panels, lateral views; right panels, dorsal views; anterior left. Confocal images of 28 hpf pu.1-GFP transgenic embryos injected with (I) control or (J) Pu.1 morpholinos showing GFP (green) and α-globin (red) expression. Arrowheads indicate coexpressing cells. spadetail mutants injected with (K) control or (L) Pu.1 morpholinos showing gata1 (blue) and l-plastin (red). Developmental Cell 2005 8, 97-108DOI: (10.1016/j.devcel.2004.11.014)

Figure 4 Gata1 Suppresses Myelopoiesis (A–C, G, H, K, and L) Control morphants and (D–F, I, J, M, and N) Gata1 morphants were analyzed by double ISH assays for (A–F) pu.1 and gata1, (G–J) mpo and α-globin, and (K–N) l-plastin and α-globin (blue and red, as indicated). Embryos at (A–F) 20 hpf or (G–N) 32 hpf. Left panels, lateral views; middle panels, dorsal views; right panels, magnified lateral views of the posterior ICM; anterior left. Developmental Cell 2005 8, 97-108DOI: (10.1016/j.devcel.2004.11.014)

Figure 5 Early Hematopoietic Gene Regulation by Pu.1 and Gata1 Embryos at (A–F) 22 hpf or (G–L) 20 hpf are oriented anterior left in (A–I) dorsal and (J–L) lateral views. Control (left), Pu.1 (middle), and Gata1 (right) morphants were analyzed for the expression of (A–C) scl, (D–F) lmo2, and (G–L) runx1. Arrows indicate ectopic gene expression and arrowheads indicate neural expression. Developmental Cell 2005 8, 97-108DOI: (10.1016/j.devcel.2004.11.014)

Figure 6 Cytological Analysis and Transplantation Assays (A–D) Cytospins of sorted GFP+ cells from pu.1-GFP transgenic embryos at (A) 12 hpf and (B) 22 hpf and from gata1-GFP transgenic embryos at (C) 14 hpf and (D) 22 hpf. A promyelocyte (arrowhead) and characteristic myeloid nuclear indentation (arrow) are indicated. (E) Cells from pu.1-GFP embryos injected with the Pu.1 morpholino. (F–H) Magnified confocal images of transplanted anterior-derived pu.1-GFP cells expressing (F) GFP (green), (G) gata1 (red), and (H) GFP with gata1. Arrowhead indicates a coexpressing cell. Developmental Cell 2005 8, 97-108DOI: (10.1016/j.devcel.2004.11.014)

Figure 7 Pu.1 Drives Myelopoiesis in cloche Mutants (A–G) Double ISH assays for (A, C, E, and G) l-plastin or (B, D, and F) mpo with gata1 and α-globin (blue and red as indicated), in (A and B) wild-type siblings or (C–G) cloche mutants at 24 hpf. Lateral views, anterior left. (E and F) pu.1 mRNA-injected cloche embryos. (G) Scl mRNA-injected cloche embryo. (H) Genotyping of representative individual embryos (from [E]) by PCR. Wild-type siblings (wt), cloche mutants (clo), or rescued cloche mutants expressing l-plastin (clo-r). (I) Model of MPC regulation. Region-specific, extracellular signals regulate the expression of pu.1 or gata1 and their effects in MPCs. The Pu.1 and Gata1 proteins reciprocally antagonize expression of each other and positively autoregulate their own. Expression of pu.1 or gata1 activates gene expression, indicative of lineage-specific differentiation. Octagons represent proteins, boxes represent genes. Putative positive (arrows) and negative (oval-heads) regulatory effects are indicated. Developmental Cell 2005 8, 97-108DOI: (10.1016/j.devcel.2004.11.014)